Двойственное пространство: различия между версиями

 
== Свойства ==
=== Конечномерные пространства ===
 
* В конечномерном случае сопряжённоеСопряжённое пространство <math>E^*</math> имеет ту же [[Размерность пространства|размерность]], что и пространство <math>E</math> над полем <math>F</math>. Следовательно, пространства <math>E</math> и <math>E^{*}</math> [[Изоморфизм|изоморфны]].
*Каждому базису <math>\{ e^i1, \}_{i=1}ldots, e^n</math> пространства <math>E</math> можно поставить в соответствие так называемый ''двойственный'' (или ''взаимный'') базис'' <math>e_1, \{ldots, e_i \}_{i=1}^ne_n</math> пространства <math>E^*</math>, где функционал <math>e_i\,</math> — проектор на вектор <math>\,e^i</math>:
 
*Каждому базису <math>\{ e^i \}_{i=1}^n</math> пространства <math>E</math> можно поставить в соответствие так называемый ''двойственный'' (или ''взаимный'') базис'' <math>\{ e_i \}_{i=1}^n</math> пространства <math>E^*</math>, где функционал <math>e_i\,</math> — проектор на вектор <math>\,e^i</math>:
: <math>e_i(x) = e_i(\alpha_1e^1 + \ldots + \alpha_ne^n) = \alpha_i, \quad\forall x\in E.</math>
* Если пространство <math>E</math> [[евклидово пространство|евклидово]], то есть оно конечномерно и на нём определено [[скалярное произведение]], то между <math>E</math> и <math>E^*</math> существует так называемый ''канонический изоморфизм'', определённый соотношением
: <math>v \in E \mapsto f \in E^*, \quad f(x) = \langle x, v \rangle, \ \forall x\in E.</math>
* В конечномерном случае второеВторое сопряжённое пространство <math>E^{**}</math> изоморфно <math>E</math>. Более того, существует ''канонический изоморфизм'' между <math>E</math> и <math>E^{**}</math> (при этом не предполагается, что пространство <math>E</math> евклидово), определённый соотношением
: <math>x \in E \mapsto z \in E^{**}, \quad z(f) = f(x), \ \forall x\in E, \ \forall f\in E^*.</math>
* Определенный выше канонический изоморфизм <math>E \to E^{**}</math> показывает, что пространства <math>E</math> и <math>E^{*}</math> играют симметричную роль: каждое из них является сопряженным к другому. Для того, чтобы выделить эту симметрию, для <math>x\in E, \ f\in E^*</math> часто пишут <math>f(x)= (x, f)</math> подобно записи скалярного произведения.
 
=== Бесконечномерные пространства ===
* Если пространство <math>E</math> [[Гильбертово пространство|гильбертово]], то по [[Теорема представлений Рисса|теореме Рисса]] существует изоморфизм между <math>E</math> и <math>E^*</math>.
* В конечномерном случае второе сопряжённое пространство <math>E^{**}</math> изоморфно <math>E</math>. Более того, существует ''канонический изоморфизм'' между <math>E</math> и <math>E^{**}</math> (при этом не предполагается, что пространство <math>E</math> евклидово), определённый соотношением
: <math>x \in E \mapsto z \in E^{**}, \quad z(f) = f(x), \ \forall x\in E, \ \forall f\in E^*.</math>
* Определенный выше канонический изоморфизм <math>E \to E^{**}</math> показывает, что пространства <math>E</math> и <math>E^{*}</math> играют симметричную роль: каждое из них является сопряженным к другому. Для того, чтобы выделить эту симметрию, для <math>x\in E, \ f\in E^*</math> часто пишут <math>f(x)= (x, f)</math> подобно записи скалярного произведения.
 
== Обозначения ==