Двойственное пространство: различия между версиями

Нет описания правки
 
В случае, когда пространство <math>E</math> конечномерное (рассматриваемом обычно в линейной алгебре), все линейные функционалы автоматически являются непрерывными, и сопряжённое пространство <math>E^*</math> состоит просто из всех линейных функционалов (функций) на <math>E</math>. В случае, когда пространство <math>E</math> бесконечномерное (рассматриваемом обычно в функциональном анализе), условие непрерывности существенно.
 
В конечномерном случае обычно элементы пространства <math>E</math> обозначают вектором-столбцом, а элементы <math>E^*</math> — вектором-строкой {{Нет АИ|10|5|2011}}. В [[тензорное исчисление|тензорном исчислении]] применяется обозначение <math>x^k</math> для элементов <math>E</math> (верхний, или ''контравариантный'' индекс) и <math>x_k</math> для элементов <math>E^*</math> (нижний, или ''ковариантный'' индекс).
 
== Свойства ==
=== Бесконечномерные пространства ===
* Если пространство <math>E</math> [[Гильбертово пространство|гильбертово]], то по [[Теорема представлений Рисса|теореме Рисса]] существует изоморфизм между <math>E</math> и <math>E^*</math>, причём, аналогично конечномерному случаю, каждый линейный ограниченный функционал может быть представлен через скалярное произведение с помощью некоторого элемента пространства <math>E</math><ref>''Халмош П.'' Теория меры. М.: Издательство иностранной литературы, 1953.</ref>.
 
== Обозначения ==
В конечномерном случае обычно элементы пространства <math>E</math> обозначают вектором-столбцом, а элементы <math>E^*</math> — вектором-строкой {{Нет АИ|10|5|2011}}. В [[тензорное исчисление|тензорном исчислении]] применяется обозначение <math>x^k</math> для элементов <math>E</math> (верхний, или ''контравариантный'' индекс) и <math>x_k</math> для элементов <math>E^*</math> (нижний, или ''ковариантный'' индекс).
 
== Вариации и обобщения ==