Вавилонская математика: различия между версиями

(→‎Общие сведения: пунктуация)
Вавилоняне писали [[клинопись|клинописными]] значками на глиняных табличках, которые в немалом количестве дошли до наших дней (более 500000, из них около 400 связаны с математикой). Поэтому мы имеем довольно полное представление о математических достижениях учёных [[Вавилония|Вавилонского государства]]. Отметим, что корни культуры вавилонян были в значительной степени унаследованы от [[шумер]]ов — [[Клинопись|клинописное письмо]], счётная методика и т. п.{{sfn |История математики|1970|с=35 }}
 
Вавилонские математические тексты носят преимущественно учебный характер. Из них видно, что вавилонская расчётная техника была намного совершеннее [[Математика в Древнем Египте|египетской]], а круг решаемых задач существенно шире. Есть задачи на решение уравнений второй степени, [[Геометрическая прогрессия|геометрические прогрессии]]. При решении применялись [[Пропорция (математика)|пропорции]], средние арифметические, проценты. Методы работы с [[прогрессия]]ми были глубже, чем у [[Математика в Древнем Египте|египтян]]. [[Линейное уравнение|Линейные]] и [[квадратные уравнения]] (см. [[Plimpton 322]]) решались ещё в эпоху [[Хаммурапи]] (он правил в 1793−1750 годах до н. э.); при этом использовалась геометрическая терминология (произведение ''ab'' называлось площадью, ''abc'' — объёмом, и т. д.). Многие значки для одночленов были шумерскими, из чего можно сделать вывод о древности этих [[алгоритм]]ов; эти значки употреблялись как буквенные обозначения неизвестных в нашей алгебре. Встречаются также [[Кубическое уравнение|кубические уравнения]] и [[Система линейных алгебраических уравнений|системы линейных уравнений]]. Венцом [[планиметрия|планиметрии]] была [[теорема Пифагора]]; [[Ван дер Варден, Бартель Леендерт|Ван дер Варден]] считает, что вавилоняне открыли её между 2000 и 1786 годами до н. э.<ref>{{книга|автор=van der Waerden, Bartel Leendert.|заглавие=Geometry and Algebra in Ancient Civilizations |ссылка=http://books.google.com/?id=_vPuAAAAMAAJ&q=%22Pythagorean+triples%22++%22Babylonian+scribes%22+inauthor:van+inauthor:der+inauthor:Waerden&dq=%22Pythagorean+triples%22++%22Babylonian+scribes%22+inauthor:van+inauthor:der+inauthor:Waerden&cd=1 |издательство=Springer |год=1983 |isbn=3-540-12159-5}}</ref>.
 
Как и в [[Математика в Древнем Египте|египетских текстах]], излагается только [[алгоритм]] решения (на конкретных примерах), без комментариев и доказательств. Однако анализ алгоритмов показывает, что общая математическая теория у вавилонян несомненно была.