Десятиугольник: различия между версиями

8 байт добавлено ,  3 года назад
м
пунктуация
м (пунктуация)
У правильного десятиугольника все стороны равной длины, и каждый внутренний угол составляет 144°.
 
Площадь правильного десятиугольника равна (t - длина стороны):
 
<math> A = \frac{5}{2}t^2 \cot \frac{\pi}{10} = \frac{5t^2}{2} \sqrt{5+2\sqrt{5}} \approx 7.694 t^2.</math>
 
=== Построение ===
По [[Теорема Гаусса — Ванцеля|теореме Гаусса - Ванцеля]] правильный десятиугольник возможно построить, используя лишь [[циркуль]] и [[Линейка|линейку]].
[[Файл:Regular_Decagon_Inscribed_in_a_Circle.gif|none|thumb|318x318px|Построение правильного десятиугольника]]
 
Пентаграммная антипризма с перекрёстом
|}
'''Пространственный десятиугольник''' - это [[пространственный многоугольник]] с десятью рёбрами и вершинами, но не лежащими в одной плоскости. У ''пространственного зиг-заг десятиугольника'' вершины чередуются между двумя параллельными плоскостями.
 
У правильного пространственного декагона все рёбра равны. В трёхмерном пространстве это зиг-заг пространственный декагон, он может быть обнаружен среди рёбер и вершин пентагональной антипризмы, пентаграммной антипризмы, пентаграммной перекрещивающейся антипризмы с той же D<sub>5d</sub> [2<sup>+</sup>,10] симметрией порядка 20.
 
=== Многоугольники Петри ===
Правильный пространственный десятиугольник - это многоугольник Петри для многих многогранников высших размерностей, как показано на этих ортогональных проекциях на различных плоскостях [[Коксетер, Гарольд|Коксетера]].
{| class="wikitable" width="500"
!A<sub>9</sub>