Наивная теория множеств: различия между версиями

м (fix homoglyphs: convert Cyrillic characters in [Со]hen to Latin)
 
== Развитие идей Кантора ==
С 1885—1895 годы работы по созданию наивной теории множеств получили развитие прежде всего в трудах Дедекинда (Кантор в течение этих 10 лет публикует лишь одну небольшую работу из-за болезни). Так, в книге «Что такое числа и для чего они служат?»<ref>{{книга|автор=Dedekind R. |заглавие=Was sind und was sollen die Zahlen?|ссылка=http://echo.mpiwg-berlin.mpg.de/ECHOdocuView?pn=1&url=%2Fmpiwg%2Fonline%2Fpermanent%2Feinstein_exhibition%2Fsources%2F8GPV80UY%2Fpageimg&viewMode=images&tocMode=thumbs&tocPN=1&searchPN=1&mode=imagepath&characterNormalization=reg&queryPageSize=10|место=Braunschweig|издательство=Drud und Berlag von Friedrich Bieweg|год=1893|alleseiten=60}}</ref> (где также впервые построена аксиоматизация арифметики, известная как [[арифметика Пеано]]) систематически изложены полученные к тому времени результаты теории множеств в наибольшей общности — для множеств произвольной природы (не обязательно числовых), бесконечное множество определено как взаимнооднозначное с частью себя, впервые сформулирована [[теорема Кантора — Бернштейна]]<ref>Доказана независимо [[Шрёдер, Эрнст|Эрнстом Шрёдером]] и {{Не переведено 2|[[Бернштейн, Феликс|Феликсом Бернштейном|de|Felix Bernstein}}]] в 1897 году</ref>, изложена алгебра множеств и установлены свойства теоретико-множественных операций{{Sfn|Медведев|1965|с=144—157|loc=14. «Что такое числа и для чего они служат?» Р. Дедекинда}}. [[Шрёдер, Эрнст|Шрёдер]] в [[1895 год в науке|1895 году]] обращает внимание на совпадение алгебры множеств и [[Логика высказываний|исчисления высказываний]], тем самым устанавливая глубокую связь между [[Математическая логика|математической логикой]] и теорией множеств.
 
В 1895—1897 годы Кантор публикует цикл из двух работ, в целом завершающий создание наивной теории множеств{{Sfn|Кантор|1985|с=173—245|loc=10. К обоснованию учения о трансфинитных множествах. Оригинал: Beiträge zur Begründung der transfiniten Mengenlehre. — Mathematische Annalen, Bd. 46 (1895) p. 481—512; Bd. 49 (1897), p. 207—246}}{{Sfn|Медведев|1965|с=171—178|loc=17. Новый взлёт Кантора}}.