Биекция: различия между версиями

28 байт добавлено ,  3 года назад
оформление отображений
(отмена правки 84067440 участника 77.106.74.87 (обс); Для такой правки нужен источник)
(оформление отображений)
== Определение ==
 
[[Функция (математика)|Функция]] <math>f:\colon X\to Y</math> называется '''биекцией''' (и обозначается <math>f:\colon X\leftrightarrow Y</math>), если она:
# Переводит разные элементы [[множество|множества]] <math>X</math> в разные элементы множества <math>Y</math> ([[Инъекция (математика)|инъективность]]). Иными словами,
#* <math>\forall x_1\in X,\;\forall x_2\in X\; x_1 \ne x_2\Rightarrow f(x_1) \ne f(x_2)</math>.
 
== Примеры ==
* [[Тождественное отображение]] <math>\mathrm{id}:\colon X\to X</math> на множестве <math>X</math> биективно.
* <math>f(x)=x,\;f(x)=x^3</math> — биективные функции из <math>\R</math> в себя. Вообще, любой [[моном]] одной [[Переменная величина|переменной]] [[Чётные и нечётные числа|нечетной]] [[степень многочлена|степени]] является биекцией из <math>\R</math> в себя.
* <math>f(x)=e^x</math> — биективная функция из <math>\R</math> в <math>\R_+=(0,\;+\infty)</math>.
 
[[Файл:Bijective_composition.svg|thumb|300px|Композиция [[Инъективность|инъекции]] и [[Сюръекция|сюръекции]], дающая биекцию.]]
* Функция <math>f:\colon X\to Y</math> является биективной тогда и только тогда, когда существует [[обратная функция]] <math>f^{-1}:\colon Y\to X</math> такая, что
: <math>\forall x\in X\;f^{-1}(f(x))=x</math> и <math>\forall y\in Y\;f(f^{-1}(y))=y.</math>
* Если функции <math>f</math> и <math>g</math> биективны, то и композиция функций <math>g\circ f</math> биективна, в этом случае <math>(g\circ f)^{-1} = f^{-1}\circ g^{-1}</math>. Коротко: '''[[Композиция функций|композиция]] биекций является биекцией.''' Обратное, однако, неверно: если <math>g\circ f</math> биективна, то мы можем утверждать лишь, что <math>f</math> инъективна, а <math>g</math> сюръективна.
Анонимный участник