Двойственное пространство: различия между версиями

Нет описания правки
'''Сопряжённое пространство''' или '''двойственное пространство''' — пространство [[линейный функционал|линейных функционалов]] на данномзаданном линейном[[векторное пространство|векторном пространстве]].
 
== Определение ==
Множество всех [[Линейный непрерывный оператор|непрерывных линейных функционалов]], определённых на [[Топологическое векторное пространство|топологическом линейномвекторном пространстве]] <math>E</math>, также образует линейноевекторное пространство. Это пространство называется ''сопряжённым'' к <math>E</math>, оно обычно обозначается <math>E^*</math>. Множество всех линейных функционалов на <math>E</math>, не обязательно непрерывных, называется ''алгебраически сопряжённым'' к <math>E</math>, оно обычно обозначается <math>E^{\#}</math>.<ref name=autogenerated1>''[[Колмогоров, Андрей Николаевич|Колмогоров А. Н.]], [[Фомин, Сергей Васильевич|Фомин С. В.]]'' Элементы теории функций и функционального анализа. — Любое издание.</ref>
 
В случае (рассматриваемом обычно в линейной алгебре), когда линейноевекторное пространство <math>E</math> конечномерное, все линейные функционалы автоматически являются непрерывными, и сопряжённое пространство <math>E^* = E^{\#}</math> состоит просто из всех линейных функционалов (функций) на <math>E</math>. В случае (рассматриваемом обычно в функциональном анализе), когда <math>E</math> бесконечномерное, вообще говоря, <math>E^* \neq E^{\#}</math>.<ref name=autogenerated1 />
 
В [[тензорное исчисление|тензорном исчислении]] применяется обозначение <math>x^k</math> для элементов <math>E</math> (верхний, или ''контравариантный'' индекс) и <math>x_k</math> для элементов <math>E^*</math> (нижний, или ''ковариантный'' индекс).
 
=== Бесконечномерные пространства ===
* Если линейноевекторное пространство <math>E</math> [[Нормированное пространство|нормированное]], то сопряжённое пространство <math>E^*</math> имеет естественную норму — это [[операторная норма]] непрерывных функционалов. Пространство <math>E^*</math> — [[банахово пространство|банахово]]<ref>''[[Люстерник, Лазарь Аронович|Люстерник Л. А.]], [[Соболев, Владимир Иванович (математик)|Соболев В. И.]]'' Элементы функционального анализа, 2-ое изд. М.: Наука, 1965, стр. 147.</ref><ref name=autogenerated1 />.
 
* Если пространство <math>E</math> [[Гильбертово пространство|гильбертово]], то по [[Теорема представлений Рисса|теореме Рисса]] существует изоморфизм между <math>E</math> и <math>E^*</math>, причём, аналогично конечномерному случаю, каждый линейный ограниченный функционал может быть представлен через скалярное произведение с помощью некоторого элемента пространства <math>E</math><ref>''Халмош П.'' Теория меры. М.: Издательство иностранной литературы, 1953.</ref>.
 
== Вариации и обобщения ==
* Термин ''сопряжённое пространство'' может иметь иное значение для линейныхвекторных пространств над [[комплексное число|полем комплексных чисел]]: пространство <math>\bar E</math>, совпадающее с <math>E</math> как [[вещественное число|вещественное]] линейноевекторное пространство, но с другой структурой умножения на комплексные числа:
*: <math>{\bar c} {\bar x} = \overline{cx}</math>
* При наличии в пространстве [[эрмитова метрика|эрмитовой метрики]] (например, в [[гильбертово пространство|гильбертовом пространстве]]) линейно-сопряжённое и комплексно-сопряжённое пространства совпадают.