Двойственное пространство: различия между версиями

Нет описания правки
м (Wikisaurus переименовал страницу Сопряжённое пространство в Двойственное пространство поверх перенаправления: сопряжённый обычно только оператор, а пространство именно двойственное)
'''СопряжённоеДвойственное пространство''' или(иногда '''двойственноесопряжённое пространство''') — пространство [[линейный функционал|линейных функционалов]] на заданном [[векторное пространство|векторном пространстве]].
 
== Определение ==
Множество всех [[Линейный непрерывный оператор|непрерывных линейных функционалов]], определённых на [[Топологическое векторное пространство|топологическом векторном пространстве]] <math>E</math>, также образует векторное пространство. Это пространство называется ''сопряжённым'' к <math>E</math>, оно обычно обозначается <math>E^*</math>. Множество всех линейных функционалов на <math>E</math>, не обязательно непрерывных, называется ''алгебраически сопряжённым'' к <math>E</math>, оно обычно обозначается <math>E^{\#}</math>.<ref name=autogenerated1>''[[Колмогоров, Андрей Николаевич|Колмогоров А. Н.]], [[Фомин, Сергей Васильевич|Фомин С. В.]]'' Элементы теории функций и функционального анализа.  — Любое издание.</ref>
 
В случае (рассматриваемом обычно в линейной алгебре), когда векторное пространство <math>E</math> конечномерное, все линейные функционалы автоматически являются непрерывными, и сопряжённое пространство <math>E^* = E^{\#}</math> состоит просто из всех линейных функционалов (функций) на <math>E</math>. В случае (рассматриваемом обычно в функциональном анализе), когда <math>E</math> бесконечномерное, вообще говоря, <math>E^* \neq E^{\#}</math>.<ref name=autogenerated1 />
=== Конечномерные пространства<ref>''Шафаревич И. Р., Ремизов А. О.'' Линейная алгебра и геометрия. — гл. III, § 7. — М.: Физматлит, 2009.</ref> ===
* Сопряжённое пространство <math>E^*</math> имеет ту же [[Размерность пространства|размерность]], что и пространство <math>E</math> над полем <math>F</math>. Следовательно, пространства <math>E</math> и <math>E^{*}</math> [[Изоморфизм|изоморфны]].
* Каждому базису <math>e^1, \ldots, e^n</math> пространства <math>E</math> можно поставить в соответствие так называемый ''двойственный'' (или ''взаимный'') базис'' <math>e_1, \ldots, e_n</math> пространства <math>E^*</math>, где функционал <math>e_i</math> — проектор на вектор <math>e^i</math>:
: <math>e_i(x) = e_i(\alpha_1e^1 + \ldots + \alpha_ne^n) = \alpha_i, \quad\forall x\in E.</math>
* Если пространство <math>E</math> [[евклидово пространство|евклидово]], то есть на нём определено [[скалярное произведение]], то между <math>E</math> и <math>E^*</math> существует так называемый ''канонический изоморфизм'', определённый соотношением
: <math>v \in E \mapsto f \in E^*, \quad f(x) = \langle x, v \rangle, \ \forall x\in E.</math>
* Второе сопряжённое пространство <math>E^{**}</math> изоморфно <math>E</math>. Более того, существует ''канонический изоморфизм'' между <math>E</math> и <math>E^{**}</math> (при этом не предполагается, что пространство <math>E</math> евклидово), определённый соотношением
 
=== Бесконечномерные пространства ===
* Если векторное пространство <math>E</math> [[Нормированное пространство|нормированное]], то сопряжённое пространство <math>E^*</math> имеет естественную норму  — это [[операторная норма]] непрерывных функционалов. Пространство <math>E^*</math>  — [[банахово пространство|банахово]]<ref>''[[Люстерник, Лазарь Аронович|Люстерник Л. А.]], [[Соболев, Владимир Иванович (математик)|Соболев В. И.]]'' Элементы функционального анализа, 2-ое изд. М.: Наука, 1965, стр. 147.</ref><ref name=autogenerated1 />.
 
* Если пространство <math>E</math> [[Гильбертово пространство|гильбертово]], то по [[Теорема представлений Рисса|теореме Рисса]] существует изоморфизм между <math>E</math> и <math>E^*</math>, причём, аналогично конечномерному случаю, каждый линейный ограниченный функционал может быть представлен через скалярное произведение с помощью некоторого элемента пространства <math>E</math><ref>''Халмош П.'' Теория меры. М.: Издательство иностранной литературы, 1953.</ref>.
 
== См. также ==
* [[Ковариантность и контравариантность (математика)|Ковариантность и контравариантность]]
* [[Рефлексивное пространство]]
 
== Примечания ==