Геометрическая прогрессия

Геометри́ческая прогре́ссия — последовательность чисел , , , (члены прогрессии), в которой первый член отличен от нуля, а каждый из последующих членов, начиная со второго, получается из предыдущего члена умножением его на ненулевое фиксированное число для данной последовательности (знаменатель прогрессии). При этом [1].

Геометрическая прогрессия называется бесконечно убывающей[2][3], если знаменатель прогрессии по абсолютной величине меньше единицы.

Произведением первых членов геометрической прогрессии называется произведение от до , то есть выражение вида Обозначение: .

Описание править

Любой член геометрической прогрессии может быть вычислен по формуле

 

Если каждый член геометрической прогрессии больше предыдущего, то прогрессия называется возрастающей; если меньше предыдущего, то убывающей.[3]


Геометрическая прогрессия возрастает, если выполняется один из наборов условий:

  и  

или

  и  .

Геометрическая прогрессия убывает, если выполняется один из наборов условий:

  и  

или

  и  .

При   — знакочередующейся[4], при   — стационарной (постоянной).

Своё название прогрессия получила по своему характеристическому свойству:

 

то есть модуль любого члена геометрической прогрессии, кроме первого, равен среднему геометрическому (среднему пропорциональному) двух рядом с ним стоящих членов[5].

Однако это не только свойство, но и признак геометрической прогрессии, формулировка которого звучит следующим образом:

Последовательность положительных чисел тогда и только тогда является геометрической прогрессией, когда каждый её член, начиная со второго, есть среднее геометрическое предшествующего и последующего членов.

Данный признак можно расширить на другие случаи. Если её члены отрицательны, получим  , где  .

Если знаки членов прогрессии чередуются, получим  , где   либо   и  .

Графическая интерпретация править

Если на координатной плоскости нанести точки с координатами  , где   — номер (натуральное число), а   —  -й член некоторой геометрической прогрессии, у которой  , то все точки будут принадлежать графику функции:

 

где   — это знаменатель геометрической прогрессии, а   — её первый член [3]. Это означает, что справедлива теорема:

Для того чтобы последовательность   являлась геометрической прогрессией при  , необходимо и достаточно, чтобы   являлась показательной функцией (от  ), заданной на множестве натуральных чисел. [3]

Примеры править

 
Получение новых квадратов путём соединения середин сторон предыдущих квадратов
  • Последовательность площадей квадратов, где каждый следующий квадрат получается соединением середин сторон предыдущего — бесконечная геометрическая прогрессия со знаменателем 1/2. Площади получающихся на каждом шаге треугольников также образуют бесконечную геометрическую прогрессию со знаменателем 1/2, сумма которой равна площади начального квадрата[6]:8—9.
  • Геометрической является последовательность количества зёрен на клетках в задаче о зёрнах на шахматной доске.
  • 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 — геометрическая прогрессия со знаменателем 2 из тринадцати членов.
  • 50; 25; 12,5; 6,25; 3,125; … — бесконечно убывающая геометрическая прогрессия со знаменателем 1/2.
  • 4; 6; 9 — геометрическая прогрессия из трёх элементов со знаменателем 3/2.
  •  ,  ,  ,   — стационарная геометрическая прогрессия со знаменателем 1 (и стационарная арифметическая прогрессия с разностью 0).
  • 3; −6; 12; −24; 48; … — знакочередующаяся геометрическая прогрессия со знаменателем −2.
  • 1; −1; 1; −1; 1; … — знакочередующаяся геометрическая прогрессия со знаменателем −1.

Свойства править

Свойства знаменателя геометрической прогрессии править

Знаменатель геометрической прогрессии можно найти по формулам:

  •  
  •  

Свойства членов геометрической прогрессии править

  • Рекуррентное соотношение для геометрической прогрессии:
 
  • Формула общего ( -го) члена:
 
  • Обобщённая формула общего члена:
 
  •  , если  .
  •  , если  .

Пусть   — соответственно  -й,  -й,  -й члены геометрической прогрессии, где  . Тогда для всякой такой тройки выполняется комплементарное свойство геометрической прогрессии, называемое тождеством геометрической прогрессии:

 
  • Произведение первых   членов геометрической прогрессии можно рассчитать по формуле
     
  • Произведение членов геометрической прогрессии начиная с k-го члена, и заканчивая n-м членом, можно рассчитать по формуле
     
  • Сумма   первых членов геометрической прогрессии
     
  • Суммой бесконечно убывающей геометрической прогрессии называется число, к которому сумма   первых членов бесконечно убывающей геометрической прогрессии стремится к неограниченно приближается с ростом  . Сумма всех членов убывающей прогрессии:
 , то   при  , и
  при  .

Свойства суммы геометрической прогрессии править

  •  
  •  

где   — сумма обратных величин, то есть  .

Свойства произведения геометрической прогрессии править

  •  
  •  , где   — сумма обратных величин, то есть  .
  •  
  •  
  •  

См. также править

Примечания править

  1. Геометрическая прогрессия Архивная копия от 12 октября 2011 на Wayback Machine на mathematics.ru
  2. Это название, хотя и является общепринятым, неудачно, так как бесконечно убывающая геометрическая прогрессия является убывающей, только если и первый член, и знаменатель прогрессии положительны.
  3. 1 2 3 4 Е. В. Якушева, А. В. Попов, О. Ю. Черкасов, А. Г. Якушев. Геометрическая прогрессия и её свойства // Экзаменационные вопросы и ответы. Алгебра и начала анализа. 9 и 11 выпускные классы: учебное пособие : книга. — М. : АСТ-ПРЕСС ШКОЛА, 2004. — С. 48. — 416 с. — 8000 экз. — ББК 22.12я72. — УДК 51(G). — ISBN 5-94776-013-4.
  4. Геометрическая прогрессия // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  5. Если геометрическая прогрессия является конечной последовательностью, то её последний член таким свойством не обладает.
  6. Роу С. Геометрические упражнения с куском бумаги. — 2-е изд. — Одесса: Mathesis, 1923. Архивировано 19 мая 2017 года.