Случайная величина

Случайная величина — переменная, значения которой представляют собой численные исходы некоторого случайного феномена или эксперимента. Другими словами, это численное выражение результата случайного события. Случайная величина является одним из основных понятий теории вероятностей.[1] Для обозначения случайной величины в математике принято использовать греческую букву «кси» . Если определять случайную величину более строго, то она является функцией , значения которой численно выражают исходы случайного эксперимента. Одним из требований к данной функции будет её измеримость, что служит для отсеивания тех случаев, когда значения данной функции бесконечно чувствительны к малейшим изменениям в исходах случайного эксперимента.

Как функция, случайная величина не является вероятностью наступления события , а возвращает численное выражение исхода .

Примером объектов, для представления состояния которых требуется применение случайных величин являются микроскопические объекты, описываемые квантовой механикой. Случайными величинами описываются события передачи наследственных признаков от родительских организмов к их потомкам (см. Законы Менделя). К случайным относятся события радиоактивного распада ядер атомов.[1]

Существует ряд задач математического анализа и теории чисел для которых участвующие в их формулировках функции целесообразно рассматривать как случайные величины, определённые на подходящих вероятностных пространствах[2].

ИсторияПравить

Роль случайной величины, как одного из основных понятий теории вероятностей, впервые была чётко осознана П. Л. Чебышевым, который обосновал общепринятую на сегодня точку зрения на это понятие (1867)[3]. Понимание случайной величины как частного случая общего понятия функции, пришло значительно позднее, в первой трети 20 века. Впервые полное формализованное представление основ теории вероятностей на базе теории меры было разработано А. Н. Колмогоровым (1933)[4], после которого стало ясным, что случайная величина представляет собой измеримую функцию, определённую на вероятностном пространстве. В учебной литературе эта точка зрения впервые последовательно проведена У. Феллером (см. предисловие к[5], где изложение строится на основе понятия пространства элементарных событий и подчёркивается, что лишь в этом случае представление случайной величины становится содержательным).

ОпределениеПравить

Формальное математическое определение следующее: пусть   — вероятностное пространство, тогда случайной величиной называется функция  , измеримая относительно   и борелевской σ-алгебры на  . Вероятностное поведение отдельной (независимой от других) случайной величины полностью описывается её распределением.

Случайную величину можно определить и другим эквивалентным способом[6]. Функция   называется случайной величиной, если для любых вещественных чисел   и   множество событий  , таких что  , принадлежит  .

ПримерыПравить

Дискретная случайная величинаПравить

Подбрасывание монетыПравить

Все возможные исходы подбрасывания монеты могут быть описаны пространством элементарных событий  орёл, решка  или кратко  . Пусть случайная величина   равна выигрышу в результате подбрасывания монеты. Пусть выигрыш будет 10 рублей каждый раз, когда монета выпадает орлом, и −33 рубля при выпадении решки. Математически эту функцию выигрыша можно представить так:

 

Если монета идеальная, то выигрыш   будет иметь вероятность, заданную как:

 
где   — вероятность получения   рублей выигрыша при одном подбрасывании монеты.
 
Если пространство исходов равно множеству всех возможных комбинаций очков на двух костях, и случайная величина равна сумме этих очков, тогда S — дискретная случайная величина, чьё распределение описывается функцией вероятности, значение которой изображено как высота соответствующей колонки.


Бросание игральных костейПравить

Случайная величина также может быть использована для описания процесса бросания игральных костей, а также для расчёта вероятности конкретного исхода таких бросков. В одном из классических примеров данного эксперимента используются две игральные кости   и  , каждая из которых может принимать значения из множества {1, 2, 3, 4, 5, 6} (количество очков на сторонах костей). Общее количество очков выпавших на костях и будет значением нашей случайной величины  , которая задаётся функцией:

 

и (если кости идеальные) функция вероятности для   задаётся через:

 ,
где   — сумма очков на выпавших костях.


Колода картПравить

Пусть экспериментатор тянет наугад одну из карт в колоде игральных карт. Тогда   будет представлять одну из вытянутых карт; здесь   не число, а карта — физический объект, название которого обозначается через символ  . Тогда функция  , принимая в качестве аргумента «название» объекта, вернёт число, с которым мы будем в дальнейшем ассоциировать карту  . Пусть в нашем случае экспериментатор вытянул Короля Треф, то есть  , тогда после подставления этого исхода в функцию  , мы получим уже число, например, 13. Это число не является вероятностью вытягивания короля из колоды или любой другой карты. Это число является результатом перевода объекта из физического мира в объект математического мира, ведь с числом 13 уже можно проводить математические операции, в то время как с объектом   эти операции проводить было нельзя.

Непрерывная случайная величинаПравить

Другой класс случайных величин - такие, для которых существует неотрицательная функция  , удовлетворяющая при любых   равенству  . Случайные величины, удовлетворяющие этому свойству называются непрерывными, а функция   называется плотностью распределения вероятностей.

Рост случайного прохожегоПравить

Пусть в одном из экспериментов нужно случайным образом выбрать одного человека (обозначим его как  ) из группы испытуемых, пусть тогда случайная величина   выражает рост выбранного нами человека. В этом случае, с математической точки зрения, случайная величина   интерпретируется как функция  , которая трансформирует каждого испытуемого   в число — его рост  . Для того чтобы рассчитать вероятность того, что рост человека попадёт в промежуток между 180 см и 190 см, или вероятность того, что его рост будет выше 150 см, нужно знать распределение вероятности  , которое в совокупности с   и позволяет рассчитывать вероятности тех или иных исходов случайных экспериментов.

Способы заданияПравить

Задать случайную величину, описав этим все её вероятностные свойства как отдельной случайной величины, можно с помощью функции распределения, плотности вероятности и характеристической функции, определяя вероятности возможных её значений. Функция распределения   равна вероятности того, что значение случайной величины меньше вещественного числа  . Из этого определения следует, что вероятность попадания значения случайной величины в интервал [a, b) равна  . Преимущество использования функции распределения заключается в том, что с её помощью удаётся достичь единообразного математического описания дискретных, непрерывных и дискретно-непрерывных случайных величин. Тем не менее, существуют разные случайные величины, имеющие одинаковые функции распределения. Например, если случайная величина   принимает значения +1 и −1 с одинаковой вероятностью 1/2, то случайные величины   и   описываются одной и той же функцией распределения F(x).

Другим способом задания случайной величины является функциональное преобразование случайной величины  . Если  борелевская функция, то   также является случайной величиной. Например, если   — стандартная нормальная случайная величина, то случайная величина   имеет распределение хи-квадрат с одной степенью свободы. Многие распределения, в том числе распределение Фишера, распределение Стьюдента являются распределениями функциональных преобразований нормальных случайных величин.

Если случайная величина дискретная, то полное и однозначное математическое описание её распределения определяется указанием функции вероятностей   всех возможных значений этой случайной величины. В качестве примера рассмотрим биномиальный и пуассоновский законы распределения.

Биноминальный закон распределения описывает случайные величины, значения которых определяют количество «успехов» и «неудач» при повторении опыта   раз. В каждом опыте «успех» может наступить с вероятностью  , «неудача» — с вероятностью  . Закон распределения в этом случае определяется формулой Бернулли:

 .

Если при стремлении   к бесконечности произведение   остаётся равной константе  , то биномиальный закон распределения сходится к закону Пуассона, который описывается следующей формулой:

 ,

где

Простейшие обобщенияПравить

Случайная величина, вообще говоря, может принимать значения в любом измеримом пространстве. Тогда её чаще называют случайным вектором или случайным элементом. Например,

  • Измеримая функция   называется  -мерным случайным вектором (относительно борелевской  -алгебры на  ).
  • Измеримая функция   называется  -мерным комплексным случайным вектором (также относительно соответствующей борелевской  -алгебры).
  • Измеримая функция, отображающая вероятностное пространство в пространство подмножеств некоторого (конечного) множества, называется (конечным) случайным множеством.

См. такжеПравить

ПримечанияПравить

  1. 1 2 Прохоров Ю. В. Случайная величина //Математическая энциклопедия/Под ред. Виноградова И. М.- М.: Советская энциклопедия, 1985.-Т.5.- Стр. 9.- 623 с.
  2. Кац М., Статистическая независимость в теории вероятностей, анализе и теории чисел, пер. с англ., М., 1963.
  3. Чебышев П. Л., О средних величинах, в кн.: Полн. Собр. Соч., т. 2, М.- Л., 1947
  4. Колмогоров А. Н., Основные понятия теории вероятностей, 2 изд., М., 1974
  5. Феллер В., Введение в теорию вероятностей и её приложения, пер. с англ., 2 изд., т. 1, М., 1967
  6. Чернова Н. И. Глава 6. Случайные величины и их распределения § 1. Случайные величины // Теория вероятностей. — Учебное пособие. — Новосибирск: Новосибирский гос. ун-т, 2007. — 160 с.

ЛитератураПравить

  • Гнеденко Б. В. Курс теории вероятности. — 8-е изд. доп. и испр. — М.: Едиториал УРСС, 2005. — 448 с. — ISBN 5-354-01091-8.
  • Математический энциклопедический словарь / Гл. ред. Прохоров Ю. В.. — 2-е изд. — М.: «Советская энциклопедия», 1998. — 847 с.
  • Тихонов В.И., Харисов В.Н. Статистический анализ и синтез радиотехнических устройств и систем. — Учебное пособие для ВУЗов. — М.: Радио и связь, 1991. — 608 с. — ISBN 5-256-00789-0.
  • Чернова Н. И. Теория вероятностей. — Учебное пособие. — Новосибирск: Новосибирский гос. ун-т, 2007. — 160 с.

СсылкиПравить