Суперкомпьютер

Суперкомпью́тер (англ. Supercomputer, СверхЭВМ, СуперЭВМ, сверхвычисли́тель) — специализированная вычислительная машина, значительно превосходящая по своим техническим параметрам и скорости вычислений большинство существующих в мире компьютеров.

«Cray-2» — самый быстрый компьютер 19851989 годов.

Как правило, современные суперкомпьютеры представляют собой большое число высокопроизводительных серверных компьютеров, соединённых друг с другом локальной высокоскоростной магистралью для достижения максимальной производительности в рамках реализации распараллеливания вычислительной задачи.

Определение понятия суперкомпьютерПравить

Определение понятия «суперкомпьютер» не раз было предметом многочисленных споров и обсуждений.

Чаще всего авторство термина приписывается Джорджу Майклу (George Anthony Michael) и Сиднею Фернбачу (Sidney Fernbach), в конце 60-х годов XX века работавшим в Ливерморской национальной лаборатории, и компании CDC. Тем не менее, известен тот факт, что ещё в 1920 году газета New York World (англ.) рассказывала о «супервычислениях», выполнявшихся при помощи табулятора IBM, собранного по заказу Колумбийского университета.

В общеупотребительный лексикон термин «суперкомпьютер» вошёл благодаря распространённости компьютерных систем Сеймура Крэя, таких как, CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3 (англ.) и Cray-4 (англ.). Сеймур Крэй разрабатывал вычислительные машины, которые по сути становились основными вычислительными средствами правительственных, промышленных и академических научно-технических проектов США с середины 60-х годов до 1996 года. Не случайно в то время одним из популярных определений суперкомпьютера было следующее: — «любой компьютер, который создал Сеймур Крэй». Сам Крэй никогда не называл свои детища суперкомпьютерами, предпочитая использовать вместо этого обычное название «компьютер».

Компьютерные системы Крэя удерживались на вершине рынка в течение 5 лет с 1985 по 1990 годы. 80-е годы XX века охарактеризовались появлением множества небольших конкурирующих компаний, занимающихся созданием высокопроизводительных компьютеров, однако к середине 90-х большинство из них оставили эту сферу деятельности, что даже заставило обозревателей заговорить о «крахе рынка суперкомпьютеров».

Ныне каждый суперкомпьютер представляет собой уникальную систему, создаваемую одним из «традиционных» игроков компьютерной индустрии (например: IBM, Hewlett-Packard, NEC и другими), которые приобрели множество ранних компаний, вместе с их опытом и технологиями. Компания Cray по-прежнему занимает достойное место в ряду производителей суперкомпьютеров.

Из-за большой гибкости самого термина до сих пор распространены довольно нечёткие представления о понятии «суперкомпьютер». Шутливая классификация Гордона Белла и Дона Нельсона, разработанная приблизительно в 1989 году, предлагала считать суперкомпьютером любой компьютер, весящий более тонны. Современные суперкомпьютеры действительно весят более 1 тонны, однако далеко не каждый тяжеловесный компьютер достоин чести считаться суперкомпьютером. В общем случае, суперкомпьютер — это компьютер намного более мощный, чем доступные для большинства пользователей машины. При этом скорость технического прогресса сегодня такова, что сегодняшний суперкомпьютер-лидер завтра легко может сдать лидерскую позицию.

Архитектура также не может считаться признаком принадлежности к классу суперкомпьютеров. Ранние компьютеры CDC были обычными машинами, всего лишь оснащёнными быстрыми для своего времени скалярными процессорами, скорость работы которых была в несколько десятков раз выше, чем у компьютеров, предлагаемых другими компаниями.

Большинство суперкомпьютеров 70-х оснащались векторными процессорами, а к началу и середине 80-х небольшое число (от 4 до 16) параллельно работающих векторных процессоров практически стало стандартной основой конфигурацией суперкомпьютеров. Конец 80-х и начало 90-х годов охарактеризовались сменой магистрального направления развития суперкомпьютеров от векторно-конвейерной обработки к большому и сверхбольшому числу параллельно соединённых скалярных процессоров.

Массово-параллельные системы стали объединять в себе сотни и даже тысячи отдельных процессорных элементов, причём ими могли служить не только специально разработанные, но и массово производимые и, следовательно, доступные в свободной продаже процессоры. Большинство массово-параллельных компьютеров создавалось на основе мощных процессоров с архитектурой RISC, наподобие PowerPC или PA-RISC.

В конце 90-х годов высокая стоимость специализированных суперкомпьютерных систем и нарастающая потребность разных слоёв общества в доступных вычислительных ресурсах привели к широкому распространению компьютерных кластеров. Для этого класса систем характерно использование отдельных узлов на основе дешёвых и широко доступных компьютерных комплектующих для серверов и персональных компьютеров и объединённых при помощи мощных коммуникационных систем и специализированных программно-аппаратных решений. Несмотря на кажущуюся простоту, кластеры довольно быстро заняли достаточно большой сегмент суперкомпьютерной индустрии, обеспечивая высочайшую производительность при минимальной стоимости системы.

В настоящее время суперкомпьютерами принято называть компьютеры с огромной вычислительной мощностью («числодробилки» или «числогрызы»). Такие машины используются для выполнения программ, реализующих наиболее интенсивные вычисления (например, прогнозирование погодно-климатических условий, моделирование ядерных взрывов и т. п.), что в том числе отличает их от серверов и мэйнфреймов (англ. mainframe) — компьютеров с высокой общей производительностью, призванных решать типовые задачи (например, обслуживание больших баз данных или одновременная работа с множеством пользователей).

Иногда суперкомпьютер выполняет одну-единственную программу, использующую всю доступную память и все процессоры системы. В иных случаях они обеспечивают выполнение большого числа разнообразных прикладных программ.

История суперкомпьютеровПравить

Одним из первых суперкомпьютеров считается Cray-1, созданный в 1974 году. С помощью поддержки векторных операций эта суперЭВМ достигала производительности в 180 миллионов операций в секунду над числами с плавающей точкой (FLOPS).

По применению суперкомпьютеров Россия сильно отстаёт от США, Китая, Европы и Японии. Если в 2018 г. доля России в мировом ВВП составила 1,8 %, то в мировой производительности суперкомпьютеров лишь 0,32 %.[1]

ПрименениеПравить

Суперкомпьютеры используются во всех сферах:

  • где для решения задачи применяется численное моделирование, сопряженное с очень большим объемом сложных вычислений;
  • там, где требуется огромный объём сложных вычислений, обработка большого количества данных в реальном времени, или решение задачи может быть найдено простым перебором множества значений множества исходных параметров (см. Метод Монте-Карло).

Совершенствование методов численного моделирования происходило одновременно с совершенствованием вычислительных машин, — чем сложнее были задачи, тем выше были требования к создаваемым машинам. Чем быстрее были машины, тем сложнее были задачи, которые на них можно было решать. Поначалу суперкомпьютеры применялись почти исключительно для оборонных задач: расчёты по ядерному и термоядерному оружию, ядерным реакторам, проектированию подводных кораблей. Потом, по мере совершенствования математического аппарата численного моделирования, развития знаний в других сферах науки — суперкомпьютеры стали применяться и в «мирных» расчётах, создавая новые научные дисциплины, как то:

Ниже приведён далеко не полный список областей применения суперкомпьютеров:

  • Вычислительная химия и медицина: изучение строения вещества и природы химической связи как в изолированных молекулах, так и в конденсированном состоянии, поиск и создание новых катализаторов и лекарств

ПроизводительностьПравить

Производительность суперкомпьютеров чаще всего оценивается и выражается в количестве операций над числами с плавающей точкой в секунду (FLOPS). Это связано с тем, что задачи численного моделирования, под которые и создаются суперкомпьютеры, чаще всего требуют вычислений, связанных с вещественными числами, зачастую с высокой степенью точности, а не целыми числами. Поэтому для суперкомпьютеров неприменима мера быстродействия обычных компьютерных систем — количество миллионов операций в секунду (MIPS). При всей своей неоднозначности и приблизительности, оценка во флопсах позволяет легко сравнивать суперкомпьютерные системы друг с другом, опираясь на объективный критерий.

Первые суперкомпьютеры имели производительность порядка 1 кфлопс, то есть 1000 операций с плавающей точкой в секунду. В США компьютер, имевший производительность в 1 миллион флопсов (1 Мфлопс) (CDC 6600), был создан в 1964 году. Известно, что в 1963 году в московском НИИ-37 (позже НИИ ДАР) был разработан компьютер на основе модулярной арифметики с производительностью 2,4 млн оп/с. Это экспериментальный компьютер второго поколения (на дискретных транзисторах) Т340-А[8] (гл. конструктор Д. И. Юдицкий). Однако следует отметить, что прямое сравнение производительности модулярных и традиционных ЭВМ некорректно. Модулярная арифметика оперирует только с целыми числами. Представление вещественных чисел в модулярных ЭВМ возможно только в формате с фиксированной запятой, недостатком которого является существенное ограничение диапазона представимых чисел.

  1. Планка в 1 миллиард флопс (1 Гигафлопс) была преодолена суперкомпьютерами NEC SX-2 в 1983 году с результатом 1.3 Гфлопс.
  2. В 1996 году суперкомпьютером ASCI Red взят барьер в 1 триллион флопс (1 Тфлопс).
  3. Рубеж 1 квадриллион флопс (1 Петафлопс) перейден в 2008 году суперкомпьютером IBM Roadrunner.

В 2010-х годах несколькими странами ведутся работы, нацеленные на создание к 2020 году экзафлопсных компьютеров, способных выполнять 1 квинтиллион операций с плавающей точкой в секунду и потребляющих при этом не более нескольких десятков мегаватт. К 2021 году корпорации Intel и Cray планируют создать первую в США экзафлопсную систему под названием Aurora для Аргоннской национальной лаборатории Министерства энергетики США[9][10].

Программное обеспечение суперкомпьютеровПравить

Наиболее распространёнными программными средствами суперкомпьютеров, так же, как и параллельных или распределённых компьютерных систем, являются интерфейсы программирования приложений (API) на основе MPI и PVM, и решения на базе открытого программного обеспечения, наподобие Beowulf и openMosix, позволяющего создавать виртуальные суперкомпьютеры даже на базе обыкновенных рабочих станций и персональных компьютеров. Для быстрого подключения новых вычислительных узлов в состав узкоспециализированных кластеров применяются технологии наподобие ZeroConf. Примером может служить реализация рендеринга в программном обеспечении Shake, распространяемом компанией Apple. Для объединения ресурсов компьютеров, выполняющих программу Shake, достаточно разместить их в общем сегменте локальной вычислительной сети.

В настоящее время границы между суперкомпьютерным и общеупотребимым программным обеспечением сильно размыты и продолжают размываться ещё более вместе с проникновением технологий параллелизации и многоядерности в процессорные устройства персональных компьютеров и рабочих станций. Исключительно суперкомпьютерным программным обеспечением сегодня можно назвать лишь специализированные программные средства для управления и мониторинга конкретных типов компьютеров, а также уникальные программные среды, создаваемые в вычислительных центрах под «собственные», уникальные конфигурации суперкомпьютерных систем.

Top500Править

Основная статья: TOP500

Начиная с 1993, суперкомпьютеры ранжируют в списке Top500. Список составляется на основе теста LINPACK по решению системы линейных алгебраических уравнений, являющейся общей задачей для численного моделирования.

Самым мощным суперкомпьютером в 2020 году по этому списку стал Фугаку, работающий в Центре вычислительных наук Института физико-химических исследований (RIKEN) в Кобе, Япония. Скорость вычислений, производимых им, составляет 442.01 петафлопс (10 в 15 степени вычислительных операций с плавающей запятой в секунду). По этому показателю он в три раза быстрее и в три раза эффективнее предыдущего рекордсмена — Summit, работающего в Ок-Риджской национальной лаборатории в Ок-Ридж, США.

Распределение по количеству эксплуатируемых суперкомпьютеров в разных странах мира в июнь 2020 года[11]
страна количество
Китай
226
США
114
Япония
29
Франция
19
Германия
16
Голландия
15
Ирландия
14
Канада
12
Великобритания
10
Италия
7
Сингапур
4
Бразилия
4
Южная Корея
3
Саудовская Аравия
3
Норвегия
3
Австралия
2
Россия
2
ОАЭ
2
Тайвань
2
Швейцария
2
Швеция
2
Индия
2
Финляндия
2
Испания
1
Чехия
1

На всех используемых суперкомпьютерах на момент 2018 года используется операционная система Linux[12]. Linux стал использоваться на всех суперкомпьютерах списка с ноября 2017 года, вытеснив последним операционную систему UNIX OS.

Из Linux-систем 64,2% не детализируют дистрибутив, 12,6% используют CentOS, 8,6% — Cray Linux, 5% — SUSE, 3% — RHEL, 0,6% — Scientific Linux, 0,6% — Ubuntu.

См. такжеПравить

ПримечанияПравить

ЛитератураПравить

СсылкиПравить