Теорема Коши о многогранниках

Теорема Коши о многогранниках утверждает, что грани многогранника вместе с правилом склейки полностью определяют выпуклый многогранник.

ФормулировкаПравить

Два замкнутых выпуклых многогранника конгруэнтны, если между их гранями, рёбрами и вершинами имеется сохраняющее инцидентность взаимно однозначное соответствие, причём соответствующие грани многогранников конгруэнтны.

ИсторияПравить

Вопрос о том, что грани многогранника вместе с правилами склейки полностью определяют выпуклый многогранник был сформулирован Лежандром в 1-м издании его учебника.[1] Там же была дана ключевая лемма о четырёх переменах знаков, которая использовалась Коши в его доказательстве.[2] Это доказательство содержало ошибку, которая была замечена Штейницем и исправлена только в 1934 году[3].

Вариации и обобщенияПравить

  • Аналогичный результат верен в пространствах всех размерностей начиная с 3.
  • Для невыпуклых многогранников аналогичный результат неверен.
    • Более того, существует невыпуклый многогранник, который допускает непрерывные деформации в классе многогранников с конгруэнтными гранями. Такой многогранник называется изгибаемым. Однако, согласно теореме Сабитова, объём такого многогранника в процессе деформаций будет оставаться неизменным.
  • Согласно теореме Александрова о развёртке, условие конгруэнтности граней можно ослабить до условия изометричности внутренней метрики поверхности многогранника.
    • Более того, то же верно для любой замкнутой выпуклой поверхности (теорема Погорелова).

См. такжеПравить

ПримечанияПравить

  1. Legendre, A. M. "Éléments de géométrie". Paris, 1794. Note XII. P. 321–334.
  2. Cauchy A. L. Sur les polygones et polyèdres, Second mémoire // J. de l’École Polytechnique. 1813. V. 9. P. 87–98.
  3. Steinitz E., Rademacher H. Vorlesungen ̈uber die Theorie der Polyeder. Berlin: Springer-Verl., 1934.

ЛитератураПравить