Теорема Хартогса

Теорема Хартогса — утверждение о достаточных условиях аналитичности функции нескольких комплексных переменных. В случае нескольких комплексных переменных достаточным условием аналитичности является аналитичность по каждому переменному. Для функций действительных переменных это неверно: функция бесконечно дифференцируема по (или ) когда (или ) является фиксированным, но даже не является непрерывной в начале координат.

ФормулировкаПравить

Если комплекснозначная функция   определена в открытом множестве    -мерного комплексного пространства   и аналитическая по каждому переменному  , когда другие переменные фиксированы, то функция   является аналитической в  .

ИсторияПравить

При дополнительном предположении непрерывности, это утверждение иногда называется леммой Осгуда, её доказал Вильям Осгуд[1]

ПримечанияПравить

  1. Osgood, William F. (1899), Note über analytische Functionen mehrerer Veränderlichen, Mathematische Annalen (Springer Berlin / Heidelberg) . — Т. 52: 462–464, ISSN 0025-5831, DOI 10.1007/BF01476172 

ЛитератураПравить

  • Хёрмандер Л. Введение в теорию функций нескольких комплексных переменных. — М.: Мир, 1968. — 280 с.