Открыть главное меню

Термоэлектронная эмиссия

Термоэлектро́нная эми́ссия (эффе́кт Ричардсо́на, эффект Эдисо́на) — явление выхода электронов из твёрдого тела, металла или карбидов или боридов переходных металлов в свободное пространство, обычно в вакуум или разрежённый газ при нагреве его до высокой температуры. Заметная эмиссия электронов наблюдается при нагреве чистых металлов только до температур свыше 900 К.

Физика явленияПравить

Для удаления электрона из металла во внешнее пространство ему необходимо придать некоторую энергию, называемую работой выхода электрона — преодолеть потенциальный барьер.

Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. При обычных температурах доля таких электронов очень мала. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода быстро растёт, и явление термоэлектронной эмиссии становится заметным.

Исследование закономерностей термоэлектронной эмиссии можно наблюдать с помощью простейшей двухэлектродной лампы — вакуумного диода, представляющего собой баллон из которого откачан газ, с размещёнными внутри него двумя электродами: катодом и анодом. В простейшем случае катодом может служить проволока из тугоплавкого металла (например, вольфрама), накаливаемая электрическим током. Анод чаще всего выполняют в виде полого металлического цилиндра, окружающего катод. Если между анодом и катодом приложить напряжение, то, при горячем катода и подаче на анод положительного относительно катода напряжения, через промежуток между анодом и катодом начинает протекать ток. Если на анод подавать отрицательное относительно катода напряжение, то ток прекращается, как бы сильно катод ни нагревали. Из этого опыта следует, что нагретый катод испускает отрицательные частицы — электроны.

Если поддерживать температуру накалённого катода постоянной и построить зависимость анодного тока от анодного напряжения — вольт-амперную характеристику вакуумного диода, то оказывается, что она нелинейна, то есть для вакуумного диода закон Ома не выполняется.

Зависимость термоэлектронного тока от анодного напряжения в области малых положительных значений описывается законом трёх вторых (установлен русским физиком С. А. Богуславским и американским физиком И. Ленгмюром):

 ,
где В — коэффициент, зависящий от формы и размеров электродов, а также их взаимного расположения.

При увеличении анодного напряжения ток возрастает до некоторого максимального значения, называемого током насыщения и далее не увеличивается при последующем повышении напряжения на аноде. При этом практически все электроны, покидающие катод, поглощаются анодом, поэтому дальнейшее увеличение напряжённости поля между анодом и катодом не может привести к увеличению тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода.

Формула Ричардсона для плотности тока насыщенияПравить

Формула, первоначально полученная Ричардсоном на основе классической электронной теории металлов, а затем уточнённая русско-американским учёным С. Дэшманом (англ.) на основе квантовой теории, называется уравнением Ричардсона — Дешмана.

Плотность тока насыщения определяется формулой Ричардсона — Дешмана, выведенной теоретически на основе квантовой статистики[1]:

 ,
где   — усреднённое по спектру термоэлектронов значение коэффициента отталкивания электронов от потенциального барьера;
  — термоэлектрическая постоянная, равная   в модели свободных электронов А. Зоммерфельда  
  — работа выхода электронов из катода;
  — постоянная Больцмана;
  и   — заряд и масса электрона;
  — постоянная Планка;
  — абсолютная температура.

Для практического применения эту формулу также записывают в виде[2]:

 ,
где   — постоянные для данного материала катода параметры, определяемые на опыте.

Уменьшение работы выхода приводит к быстрому увеличению плотности тока насыщения. Поэтому практически катоды из чистых металлов применяются редко и используют оксидные катоды (например, никель, покрытый тонким слоем оксидов щёлочноземельных металлов), работа выхода электронов у которых мала (1-1,5 эВ).

Применение явленияПравить

На явлении термоэлектронной эмиссии основана работа всех вакуумных электронных приборов и электронно-лучевых приборов, электронно-лучевой технологии, электронных микроскопах, термоэмиссионных преобразователей энергии.

ПримечанияПравить

  1. Фридрихов С. А., Мовнин С. М. Глава 10. Физические основы эмиссионной электроники // Физические основы электронной техники. — М.: Высшная школа, 1982. — С. 434—435. — 608 с.
  2. Зиновьев В. А. Краткий технический справочник. Том 1. — М.-Л. Техтеориздат, 1949. — c. 183

ЛитератураПравить

  • Херинг К., Никольс М. Термоэлектронная эмиссия. — М.: Издательство иностранной литературы, 1950. — 196 с.

СсылкиПравить