Теорема Ньютона — Лейбница
Формула Ньютона — Лейбница или основная теорема анализа даёт соотношение между двумя операциями: взятием интеграла Римана и вычислением первообразной.
ФормулировкаПравить
Если непрерывна на отрезке и — любая её первообразная на этом отрезке, то имеет место равенство |
Пусть на отрезке задана интегрируемая функция .
Зададим произвольное значение и определим новую функцию . Она определена для всех значений , потому что мы знаем, что если существует интеграл от на , то существует также интеграл от на , где . Напомним, что мы считаем по определению
(1)
Заметим, что
Покажем, что непрерывна на отрезке . В самом деле, пусть ; тогда
и если , то
Таким образом, непрерывна на независимо от того, имеет или не имеет разрывы; важно, что интегрируема на .
На рисунке изображён график . Площадь переменной фигуры равна . Её приращение равно площади фигуры , которая в силу ограниченности , очевидно, стремится к нулю при независимо от того, будет ли точкой непрерывности или разрыва , например точкой .Пусть теперь функция не только интегрируема на , но непрерывна в точке . Докажем, что тогда имеет в этой точке производную, равную
(2)
В самом деле, для указанной точки
(1) , (3)
Мы положили , а так как постоянная относительно , то . Далее, в силу непрерывности в точке для всякого можно указать такое , что для .
Поэтому
что доказывает, что левая часть этого неравенства есть о(1) при .
Переход к пределу в (3) при показывает существование производной от в точке и справедливость равенства (2). При речь здесь идёт соответственно о правой и левой производной.
Если функция непрерывна на , то на основании доказанного выше соответствующая ей функция
(4)
имеет производную, равную . Следовательно, функция есть первообразная для на .
Это заключение иногда называется теоремой об интеграле с переменным верхним пределом, или теоремой Барроу.
Мы доказали, что произвольная непрерывная на отрезке функция имеет на этом отрезке первообразную, определенную равенством (4). Этим доказано существование первообразной для всякой непрерывной на отрезке функции.
Пусть теперь есть произвольная первообразная функции на . Мы знаем, что , где — некоторая постоянная. Полагая в этом равенстве и учитывая, что , получим .
Таким образом, . Но
Поэтому
Замечание. Применение формулы к разрывной или к неограниченной функции может привести к ошибке. Пример неправильного вычисления:
- хотя интеграл от положительной функции не может быть отрицателен.
Причина ошибки — подынтегральная функция разрывна (и не ограничена) в нуле, поэтому формула Ньютона—Лейбница к ней неприменима.
ИсторияПравить
Ещё до появления математического анализа данная теорема (в геометрической или механической формулировке) была известна Грегори и Барроу. Например, Барроу описал этот факт в 1670 году как зависимость между задачами на квадратуры и на проведение касательных.
Ньютон сформулировал теорему словесно следующим образом: «Для получения должного значения площади, прилегающей к некоторой части абсциссы, эту площадь всегда следует брать равной разности значений z [первообразной], соответствующих частям абсцисс, ограниченным началом и концом площади».
У Лейбница запись данной формулы в современном виде также отсутствует, поскольку обозначение определённого интеграла появилось гораздо позже, у Фурье в начале XIX века.
Современную формулировку привёл Лакруа в начале XIX века.
ЗначениеПравить
Основная теорема анализа устанавливает связь между дифференциальным и интегральным исчислениями. Понятие первообразной (а значит, и неопределённого интеграла) определяется через понятие производной и, таким образом, относится к дифференциальному исчислению. В то время как понятие определённого интеграла Римана формализуется как предел, к которому сходится так называемая интегральная сумма. Оно независимо от понятия производной и относится к другой ветви анализа — интегральному исчислению. Формула Ньютона — Лейбница же позволяет выразить определённый интеграл через первообразную.
Интеграл ЛебегаПравить
Функция представляет собой неопределённый интеграл суммируемой функции . Функция является абсолютно непрерывной.
Теорема (Лебег): абсолютно непрерывна на отрезке тогда и только тогда, когда существует интегрируемая на функция такая, что .
Из этой теоремы вытекает, что если абсолютно непрерывна на , то её производная существует почти всюду, интегрируема и удовлетворяет равенству[1]:
- , .
Некоторые следствияПравить
В качестве следствий этой теоремы можно назвать формулу замены переменных, а также теорему о разложении Лебега монотонных функций[1].
Интегрирование по частямПравить
Пусть и - абсолютно непрерывные функции на отрезке . Тогда:
- .
Формула следует немедленно из основной теоремы анализа и правила Лейбница[1].
Вариации и обобщенияПравить
См. такжеПравить
ПримечанияПравить
- ↑ 1 2 3 Богачёв, В.И., Смолянов О.Г. Действительный и функциональный анализ: университетский курс. — М.-Ижевск: НИЦ "Регулярная и хаотическая динамика", Институт компьютерных исследований, 2009. — С. 188-197. — 724 с. — ISBN 978-5-93972-742-6.
ЛитератураПравить
- Демидович Б. П. Отдел 3. Формула Ньютона — Лейбница // Сборник задач и упражнений по математическому анализу. — 1990. — (Курс высшей математики и математической физики).
- Камынин Л. И. Математический анализ. Т. 1, 2. — 2001.
- Никифоровский В. А. Путь к интегралу. — М.: Наука, 1985.