Открыть главное меню

Формулы Виета — формулы, связывающие коэффициенты многочлена и его корни.

Этими формулами удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням.

ИсторияПравить

Эти тождества неявно присутствуют в работах Франсуа Виета. Однако Виет рассматривал только положительные вещественные корни, поэтому у него не было возможности записать эти формулы в общем виде.[1]:138—139

ФормулировкаПравить

Если   — корни многочлена

 

(каждый корень взят соответствующее его кратности число раз), то коэффициенты   выражаются в виде симметрических многочленов от корней[2], а именно:

 

Иначе говоря,   равно сумме всех возможных произведений из   корней.

Следствие: из последней формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также целочисленный.

Если старший коэффициент многочлена не равен единице:

 

то для применения формулы Виета необходимо предварительно разделить все коэффициенты на   (это не влияет на значения корней многочлена). В этом случае формулы Виета дают выражение для отношений всех коэффициентов к старшему:

 

ДоказательствоПравить

Доказательство осуществляется рассмотрением равенства, полученного разложением многочлена по корням, учитывая, что  

 

Приравнивая коэффициенты при одинаковых степенях   (теорема единственности), получаем формулы Виета.

ПримерыПравить

Квадратное уравнениеПравить

Если   и   — корни квадратного уравнения   ,то

 

В частном случае, если   (приведенная форма  ), то

 

Кубическое уравнениеПравить

Если   — корни кубического уравнения  , то

 

Вариации и обобщенияПравить

Из приведенного выше доказательства видно, что формулы Виета получаются чисто алгебраически из свойств сложения и умножения. Поэтому они применимы к многочленам с коэффициентами из произвольной области целостности  , если старший коэффициент многочлена равен единице   а корни располагаются в алгебраическом замыкании поля частных для  

Если коэффициенты многочлена берутся из произвольного коммутативного кольца, не являющегося областью целостности (то есть имеющего делители нуля), то формулы Виета, вообще говоря, не выполняются. Например, рассмотрим в качестве   кольцо вычетов по модулю 8 и многочлен   Он имеет в этом кольце не два, а четыре корня:   Поэтому использованное в доказательстве разложение на линейные множители, число которых равно числу корней, не имеет места, и формулы Виета, как легко проверить, неверны.

См. такжеПравить

ПримечанияПравить

  1. Florian Cajori. A History of Mathematics. — 5th edition. — 1991.
  2. Алгебра многочленов, 1980, с. 26-28.

ЛитератураПравить

  • Винберг Э. Б. Алгебра многочленов. Учебное пособие для студентов-заочников III—IV курсов физико-математических факультетов педагогических институтов. — М.: Просвещение, 1980.
  • Weisstein, Eric W. Vieta's Formulas / From MathWorld--A Wolfram Web Resource (англ.)
  • Hazewinkel, Michiel, ed. (2001), "Viète theorem" (недоступная ссылка), Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4 (англ.)
  • Funkhouser, H. Gray (1930), "A short account of the history of symmetric functions of roots of equations", American Mathematical Monthly (Mathematical Association of America) 37 (7): 357–365, doi:10.2307/2299273, JSTOR 2299273 (англ.)