Центрированные многоугольные числа

Центрированные многоугольные числа — это класс плоских -угольных фигурных чисел (), получаемый следующим геометрическим построением. Сначала на плоскости фиксируется некоторая центральная точка. Затем вокруг неё строится правильный -угольник с точками вершин, каждая сторона содержит две точки (см. рисунок). Далее снаружи строятся новые слои -угольников, причём каждая их сторона на новом слое содержит на одну точку больше, чем в предыдущем слое, то есть начиная со второго слоя каждый следующий слой содержит на больше точек, чем предыдущий. Общее число точек внутри каждого слоя и принимается в качестве центрированного многоугольного числа (точка в центре считается начальным слоем)[1].

Примеры построения центрированных многоугольных чисел:

Треугольные Квадратные Пятиугольные Шестиугольные
Centered triangular number 19.svg Centered square number 25.svg Centered pentagonal number 31.svg Hex number 37.svg

Из построения видно, что центрированные многоугольные числа получаются как частичные суммы следующего ряда: (например, центрированные квадратные числа, для которых образуют последовательность: ) Этот ряд можно записать как , откуда видно, что в скобках — порождающий ряд для классических треугольных чисел. Следовательно, каждая последовательность центрированных -угольных чисел, начиная со 2-го элемента, может быть представлена как где — последовательность треугольных чисел. Например, центрированные квадратные числа — это учетверённые треугольные числа плюс 1, порождающий ряд для них имеет вид: [2]

Общая формула[2] для -го центрированного -угольного числа :

(ОЦФ)

Сводная таблицаПравить

Число углов k Тип числа Начало последовательности Ссылка на OEIS
3 Центрированные треугольные числа 1, 4, 10, 19, 31, … A005448
4 Центрированные квадратные числа 1, 5, 13, 25, 41, … A001844
5 Центрированные пятиугольные числа 1, 6, 16, 31, 51, … A005891
6 Центрированные шестиугольные числа 1, 7, 19, 37, 61, … A003215
7 Центрированные семиугольные числа 1, 8, 22, 43, 71, … A069099
8 Центрированные восьмиугольные числа 1, 9, 25, 49, 81, … A016754
9 Центрированные девятиугольные числа 1, 10, 28, 55, 91, … A060544
10 Центрированные десятиугольные числа 1, 11, 31, 61, 101, … A062786

и так далее.

ПримечанияПравить

ЛитератураПравить

СсылкиПравить