Центр вписанной окружности

Центр вписанной окружности треугольника (инцентр) — одна из замечательных точек треугольника, точка пересечения биссектрис треугольника. Центр вписанной в треугольник окружности также иногда называют инцентром.

Центр вписанной окружности
Вики вписанная окружность7.png
Окружность, вписанная в треугольник
Барицентрические координаты
Трилинейные координаты 1:1:1
Код ЭЦТ X(1)
Связанные точки
Изогонально сопряженная она же
Дополнительная[es] центр Шпикера
Антидополнительная[es] точка Нагеля
Commons-logo.svg Медиафайлы на Викискладе

Традиционно обозначается латинской буквой (по первой букве английского слова "Incenter"). В энциклопедии центров треугольника зарегистрирован под символом .

СвойстваПравить

  • Центр вписанной окружности треугольника находится на одинаковом расстоянии от всех сторон треугольника.
  • Для треугольника   со сторонами  ,   и  , противолежащими вершинам  ,   и   соответственно, инцентр делит биссектрису угла   в отношении:
     .
 
Теорема трилистника
  • Если продолжение биссектрисы угла   пересекает описанную окружность   в точке  , то выполняется равенство:  , где   — центр вневписанной окружности, касающейся стороны  ; это свойство инцентра известно как теорема трилистника (также — лемма о трезубце, теорема Клайнэра).
  • Расстояние между инцентром   и центром описанной окружности   выражается формулой Эйлера:
     ,
где   и   — радиусы описанной и вписанной окружностей соответственно.
  • Перпендикуляры, восставленные к сторонам треугольника в точках касания вневписанных окружностей, пересекаются в одной точке. Эта точка симметрична центру вписанной окружности относительно центра описанной окружности[1].
  • Инцентр можно найти как центр масс вершин треугольника если в каждую вершину поместить массу, равную длине противолежащей стороны (см. также Центр Шпикера).
 
Полувписанная окружность и центр гомотетии G для вписанной и описанной окружностей с радиусами соответственно r и R. Лемма Веррьера: Центр вписанной окружности лежит на отрезке, соединяющем точки касания сторон треугольника и окружности Веррьера (полувписанной окружности)
  • Лемма Веррьера[3]. Точки касания окружностей Веррьера (полувписанных окружностей) со сторонами лежат на прямой, которая проходит через центр вписанной окружности (инцентр) (См. серый рис. снизу).
  • Теорема Ригби. Если к любой стороне остроугольного треугольника провести высоту и касающуюся ее с другой стороны вневписанную окружность, то точка касания последней с этой стороной, середина упомянутой высоты, а также инцентр лежат на одной прямой.[4].
    • Из теоремы Ригби следует, что 3 отрезка, соединяющих середину каждой из 3 высот треугольника с точкой касания вневписанной окружности, проведенной к той же стороне, что и высота, пересекаются в инцентре.
 
Теорема Тебо 3
  • Третья теорема Тебо. Пусть   — произвольный треугольник,   — произвольная точка на стороне  ,   — центр окружности, касающейся отрезков   и описанной около   окружности,   — центр окружности, касающейся отрезков   и описанной около   окружности. Тогда отрезок   проходит через точку   — центр окружности, вписанной в  , и при этом  , где  .

См. такжеПравить

ПримечанияПравить

  1. Мякишев А. Г. . Элементы геометрии треугольника. — М.: МЦНМО, 2002. — 32 с. — (Библиотека «Математическое просвещение». вып. 19). — ISBN 5-94057-048-8. — С. 11, п. 5.
  2. Honsberger, R.. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer. 1995. P. 51, Пункт (b).// https://b-ok.cc/book/447019/c8c303
  3. Ефремов Д. Новая геометрия треугольника. — Одесса, 1902. — С. 130. — 334 с.
  4. Ross Honsberger, "3. An Unlikely Collinearity" in "Episodes in Nineteenth and Twentieth Century Euclidean Geometry" (Washington, DC: The Mathematical Association of America, 1996, ISBN 978-0883856390), p. 30, Figure 34

ЛитератураПравить

  • Факультативный курс по математике. 7-9 / Сост. И. Л. Никольская. — М.: Просвещение, 1991. — С. 88-90. — 383 с. — ISBN 5-09-001287-3.