Центр масс (тж. центр ине́рции) — геометрическая точка, положение которой определяется распределением массы в теле, а перемещение характеризует движение тела или механической системы как целого[1]. Радиус-вектор данной точки задаётся формулой
где — зависящая от координат плотность, а интегрирование осуществляется по объёму тела. Центр масс может оказаться как внутри, так и вне тела.
Использование понятия центра масс, а также системы координат, связанной с центром масс, удобно во многих приложениях механики и упрощает расчёты. Если на механическую систему не действуют внешние силы, то её центр масс движется с постоянной по величине и направлению скоростью.
Джованни Чева применял рассмотрение центров масс к решению геометрических задач, в результате были сформулированы теоремы Менелая и теоремы Чевы[2].
В случае систем материальных точек и тел в однородном гравитационном поле центр масс совпадает с центром тяжести, хотя в общем случае это разные понятия.
Центр масс в классической механике
правитьОпределение
правитьПоложение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом[3]:
где — радиус-вектор центра масс, — радиус-вектор i-й точки системы, — масса i-й точки.
Для случая непрерывного распределения масс:
где — суммарная масса системы, — объём, — плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.
Если система состоит не из материальных точек, а из протяжённых тел с массами , то радиус-вектор центра масс такой системы связан с радиус-векторами центров масс тел соотношением[4]:
Действительно, пусть даны несколько систем материальных точек с массами Радиус-вектор -ной системы:
При переходе к протяжённым телам с непрерывным распределением плотности в формулах будут интегралы вместо сумм, что даст тот же результат.
Иначе говоря, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.
Примеры
править- Центры масс плоских однородных фигур
- У отрезка — середина.
- У многоугольников :
- У параллелограмма — точка пересечения диагоналей.
- У треугольника — точка пересечения медиан (центроид).
- У правильного многоугольника — центр поворотной симметрии.
- У полукруга — точка, делящая перпендикулярный радиус в отношении от центра круга.
Координаты центра масс однородной плоской фигуры можно вычислить по формулам (следствие из теорем Паппа — Гульдина):
- и , где — объём тела, полученного вращением фигуры вокруг соответствующей оси, — площадь фигуры.
- Центры масс периметров однородных фигур
- Центр масс сторон треугольника находится в центре вписанной окружности дополнительного треугольника (треугольника с вершинами, расположенными в серединах сторон данного треугольника). Эту точку называют центром Шпикера. Это означает то, что если стороны треугольника сделать из тонкой проволоки одинакового сечения, то центр масс (барицентр) полученной системы будет совпадать с центром вписанной окружности дополнительного треугольника или с центром Шпикера.
Использование
правитьПонятие центра масс широко используется в физике, в частности, в механике.
Движение твёрдого тела можно рассматривать как суперпозицию движения центра масс и вращательного движения тела вокруг его центра масс. Центр масс при этом движется так же, как двигалось бы тело с такой же массой, но бесконечно малыми размерами (материальная точка). Последнее означает, в частности, что для описания этого движения применимы все законы Ньютона. Во многих случаях можно вообще не учитывать размеры и форму тела и рассматривать только движение его центра масс.
Часто бывает удобно рассматривать движение замкнутой системы в системе отсчёта, связанной с центром масс. Такая система отсчёта называется системой центра масс (Ц-система), или системой центра инерции. В ней полный импульс замкнутой системы всегда остаётся равным нулю, что позволяет упростить уравнения её движения.
Центр масс в релятивистской механике
правитьВ случае высоких скоростей (порядка скорости света) (например, в физике элементарных частиц) для описания динамики системы применяется аппарат СТО. В релятивистской механике (СТО) понятия центра масс и системы центра масс также являются важнейшими понятиями, однако, определение понятия меняется:
где — радиус-вектор центра масс, — радиус-вектор i-й частицы системы, — полная энергия i-й частицы.
Данное определение относится только к системам невзаимодействующих частиц. В случае взаимодействующих частиц в определении должны в явном виде учитываться импульс и энергия поля, создаваемого частицами[5].
Во избежание ошибок следует понимать, что в СТО центр масс характеризуется не распределением массы, а распределением энергии. В курсе теоретической физики Ландау и Лифшица предпочтение отдаётся термину «центр инерции». В западной литературе по элементарным частицам применяется термин «центр масс» (англ. center-of-mass): оба термина эквивалентны.
Скорость центра масс в релятивистской механике можно найти по формуле:
Смежные понятия
правитьЦентр масс vs. барицентр
правитьТермин «центр масс» синонимичен одному из значений понятия барицентр (от др.-греч. βαρύς — тяжёлый + κέντρον — центр), однако последнее применяется преимущественно в задачах астрофизики и небесной механики. Под барицентром подразумевается общий для нескольких небесных тел центр масс, вокруг которого эти тела движутся. Примером может выступить совместное движение планеты и звезды (см. рис.) или компонент двойных звёзд. Центр масс (барицентр) в таком случае находится на отрезке длины , соединяющем тела массами и , на удалении от тела .
Другое значение слова барицентр относится, скорее, к геометрии, нежели к физике; в этом значении выражение для координаты барицентра отличается от формулы для центра масс отсутствием плотности (как если бы всегда было const).
Центр масс vs. центр тяжести
правитьЦентр масс тела не следует путать с центром тяжести.
Центром тяжести механической системы называется точка, относительно которой суммарный момент сил тяжести (действующих на систему) равен нулю. Например, в системе, состоящей из двух одинаковых масс, соединённых несгибаемым стержнем, и помещённой в неоднородное гравитационное поле (например, планеты), центр масс будет находиться в середине стержня, в то время как центр тяжести системы будет смещён к тому концу стержня, который находится ближе к планете (ибо вес P = m·g зависит от параметра гравитационного поля g), и, вообще говоря, даже расположен вне стержня.
В однородном гравитационном поле центр тяжести всегда совпадает с центром масс. В некосмических задачах гравитационное поле обычно может считаться постоянным в пределах объёма тела, поэтому на практике эти два центра почти совпадают.
По этой же причине понятия центр масс и центр тяжести совпадают при использовании этих терминов в геометрии, статике и тому подобных областях, где применение его по сравнению с физикой можно назвать метафорическим и где неявно предполагается ситуация их эквивалентности (поскольку реального гравитационного поля нет, то и учёт его неоднородности не имеет смысла). В этих применениях традиционно оба термина синонимичны, и нередко второй предпочитается просто в силу того, что он более старый.
См. также
правитьПримечания
править- ↑ Тарг С. М. Центр инерции (центр масс) // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1999. — Т. 5: Стробоскопические приборы — Яркость. — С. 624—625. — 692 с. — 20 000 экз. — ISBN 5-85270-101-7.
- ↑ G. Ceva, De lineis rectis se invicem secantibus, statica constructio Milan, 1678
- ↑ Журавлёв, 2001, с. 66.
- ↑ Фейнман Р., Лейтон Р., Сэндс М. Выпуск 2. Пространство. Время. Движение // Фейнмановские лекции по физике. — М.: Мир, 1965. — 164 с. — С. 68.
- ↑ Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 7-е, исправленное. — М.: Наука, 1988. — 512 с. — («Теоретическая физика», том II). — ISBN 5-02-014420-7.
Литература
править- Бобылёв Д. К. Центр, в физике // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Журавлёв В. Ф. Основы теоретической механики. 2-е изд. — М.: Физматлит, 2001. — 320 с. — ISBN 5-94052-041-3..