Цифровая обработка изображений

Цифровая обработка изображения — использование компьютерных алгоритмов для обработки цифровых изображений[1]. Как область цифровой обработки сигналов, цифровая обработка изображения имеет много преимуществ перед аналоговой обработкой[en]. Она позволяет применять гораздо более широкий ряд алгоритмов к входным данным и избежать проблем, таких как добавленные шумы и искажения в процессе обработки. Поскольку изображения определяются как двухмерные (или выше), цифровая обработка изображения может быть промоделирована в виде многомерных систем[en].

ИсторияПравить

Первые техники цифровой обработки изображений были разработаны в 1960-х годах в Лаборатории реактивного движения, Массачусетском технологическом институте, Лабораториях Белла, Мэрилендском университете и других исследовательских центрах в качестве приложений для спутниковой фотосъёмки, преобразования к стандартам фототелеграфа, медицинской визуализации, видеотелефонии, распознавания символов и улучшения фотографий[2]. Цена обработки на оборудовании того времени была, однако, очень высокой. Ситуация изменилась в 1970-х годах, когда стали доступны дешёвые компьютеры и другое оборудование. Затем появилась возможность обрабатывать изображения в реальном времени для некоторых задач, таких как преобразование телевизионных стандартов[en]. С ростом мощности компьютеров общего назначения на них стали выполняться почти все специализированные операции, требующие больших затрат ресурсов компьютера. С быстрыми компьютерами и обработкой сигналов, ставшими доступными в 2000-х годах, цифровая обработка изображения стала наиболее общей формой обработки изображения и, в общем случае, используется не только потому, что она даёт наиболее гибкие методы, но и потому, что это дешевле.

Технология цифровой обработки изображения для медицинских приложений попала в зал славы Космического фонда США по космическим технологиям в 1994[3].

ЗадачиПравить

Цифровая обработка изображения позволяет применение существенно более сложных алгоритмов, а следовательно, может дать как большую производительность на простых задачах, так и реализовывать методы, которые были бы невозможны при аналоговой реализации.

В частности, цифровая обработка изображения является единственной практичной технологией для:

Некоторые техники, которые используются в цифровой обработке изображения:

Преобразование цифрового изображенияПравить

ФильтрацияПравить

Цифровые фильтры используются для размывания и увеличения резкости цифровых изображений. Фильтрация может быть осуществлена в пространственной области путём свёртки со специально разработанными ядрами (массивами фильтрации) или в частотной области (Фурье) путём отсеивания определённых областей частот. Следующие примеры показывают оба метода[4]:

Тип фильтра Ядро или маска Пример
Исходное изображение    
Пространственный фильтр нижних частот    
Пространственный фильтр верхних частот    
Представление Фурье Псевдокод:

image = шахматная_доска

F = Преобразование Фурье изображения

Показать изображение: log(1+Absolute Value(F))

 
Фильтр Фурье нижних частот    
Фильтр Фурье верхних частот    

Отступы изображения при фильтрации Фурье областиПравить

К изображениям обычно добавляется отступ перед преобразованием в Фурье-пространство. Отфильтрованные по верхним частотам изображения ниже иллюстрируют результат различных техник отступа:

Добавление нулей Отступ путём повторения рёбер
   

Заметим, что фильтр показывает дополнительные рёбра в случае добавления нулей.

Примеры кода фильтрацииПравить

Пример MATLAB для пространственной фильтрации области по верхним частотам.

img=checkerboard(20);                           % generate checkerboard
% ****************  SPATIAL DOMAIN  ******************
klaplace=[0 -1 0; -1 5 -1;  0 -1 0];             % Laplacian filter kernel
X=conv2(img,klaplace);                          % convolve test img with
                                                % 3x3 Laplacian kernel
figure()
imshow(X,[])                                    % show Laplacian filtered 
title('Laplacian Edge Detection')

Аффинные преобразованияПравить

Аффинные преобразования дают возможность осуществлять базовые преобразования изображений, такие как изменение пропорции, вращение, перенос, зеркальное отражение и косой сдвиг, как показано на примерах ниже[4]:

Название
преобразования
Аффинная матрица Пример
Тождественное преобразование    
Отражение    
Изменение пропорций[en]    
Вращение     где  
Косой сдвиг[en]    

ПриложенияПравить

Изображения цифровой камерыПравить

Цифровые камеры обычно включают специализированные аппаратные средства цифровой обработки изображения – либо отдельные микросхемы, либо путём добавления цепей в другие микросхемы – для преобразования сырых данных от фотоматрицы в откорректированное по цвету[en] изображение в стандартном формате файле изображения.

ФильмыПравить

Западный мир (1973) был первым художественным фильмом с использованием цифровой обработки изображения для пикселизации фотографии с целью промоделировать зрение андроида[5].

См. такжеПравить

ПримечанияПравить

ЛитератураПравить

Литература для дальнейшего чтенияПравить

СсылкиПравить