Открыть главное меню

Чевиана — это отрезок в треугольнике, соединяющий вершину треугольника с точкой на противоположной стороне[1]. Часто рассматриваются три таких отрезка, пересекающихся в одной точке, которые совместно называются чевианами. Название «чевиана» происходит от имени итальянского инженера Джованни Чевы, доказавшего известную теорему о чевианах, которая носит его имя[2]. Медианы, биссектрисы и высоты в остроугольном треугольнике являются специальными случаями чевиан.

Содержание

ДлинаПравить

 
Треугольник с чевианой длины d

Теорема СтюартаПравить

Длину чевианы можно найти по теореме Стюарта — длина чевианы d (см. рисунок) задаётся формулой

 

МедианаПравить

Если чевиана является медианой (то есть делит сторону пополам), длина может быть определена по формуле

 

или

 

поскольку

 

Следовательно,

 

БиссектрисаПравить

Если чевиана является биссектрисой, её длина удовлетворяет формуле

 

и [3]

 

откуда

 ,

где полупериметр s = (a+b+c)/2.

Сторона a делится в пропорции b:c.

ВысотаПравить

Если чевиана является высотой, а потому перпендикулярна стороне, её длина удовлетворяет формулам

 

и

 

где полупериметр s = (a+b+c) / 2.

Свойства отношенийПравить

 
Три чевианы, проходящие через общую точку

Имеются различные свойства пропорций длин, образованных тремя чевианами, проходящими через одну общую внутреннюю точку[4]. Для треугольника на рисунке справа выполняются равенства

  (Теорема Чевы)
 
 
 

Два последних свойства эквивалентны, поскольку сумма этих двух уравнений даёт тождество 1 + 1 + 1 = 3.

Делители периметраПравить

Делители периметра треугольника — это чевиана, которая делит периметр пополам. Три таких делителя пересекаются в точке Нагеля треугольника.

Делители площадиПравить

Три делителя (пополам) площади треугольника — это его медианы.

ТрисектрисыПравить

Если в каждой вершине треугольника проведены две чевианы, делящие углы на три равные части, то шесть чевиан пересекаются попарно, образуя правильный треугольник, называемый треугольником Морли.

Площадь внутреннего треугольника, образованного чевианамиПравить

Теорема Рауса определяет отношение площади заданного треугольника к площади треугольника, образованного попарным пересечением трёх чевиан, по одной из каждой вершины.

См. такжеПравить

ПримечанияПравить

ЛитератураПравить

  • H. S. M. Coxeter, S. L. Greitzer. Geometry Revisited. — Washington, DC: Mathematical Association of America, 1967. — ISBN 0-883-85619-0.
  • James E. Lightner. A new look at the 'centers' of a triangle // The Mathematics Teacher. — 1975. — Т. 68, вып. 7. — С. 612–615.
  • Ross Honsberger. Episodes in Nineteenth and Twentieth Century Euclidean Geometry // Mathematical Association of America. — 1995. — С. 13, 137.
  • Vladimir Karapetoff. Some properties of correlative vertex lines in a plane triangle // American Mathematical Monthly. — 1929. — Вып. 36. — С. 476–479.
  • Indika Shameera Amarasinghe. A New Theorem on any Right-angled Cevian Triangle // Journal of the World Federation of National Mathematics Competitions. — 2011. — Т. 24 (02). — С. 29–37.
  • Roger A. Johnson. Advanced Euclidean Geometry. — Dover Publ., 2007. — С. 70. (оригинал - 1929),
  • Alfred S. Posamentier, Charles T. Salkind'. Challenging Problems in Geometry. — 2nd. — Dover Publishing Co.,, 1996.