Открыть главное меню

Электрофил (от др.-греч. ἤλεκτρον — «янтарь» + др.-греч. φιλέω — «любить», дословно «любящий электроны») — реагент или молекула, имеющая свободную орбиталь на внешнем электронном уровне. Как правило такие реагенты являются акцепторами пары электронов при образовании химической связи с нуклеофилом, являющимся донором электронной пары и вытесняет уходящую группу в виде положительно заряженной частицы[1]. Все электрофилы являются кислотами Льюиса.

Электрофилы проявляют свойства электронодефицитных реагентов, стремящихся к заполнению вакантной орбитали электронами. К электрофилам относятся положительно заряженные ионы — катионы (самый простой пример протон H+, карбокатионы, NO2+), электронодефицитные нейтральные молекулы — SO3, а также молекулы с сильнополяризованной связью (HCOO-Br+).

Реакции, протекающие с участием электрофилов:

ПримерыПравить

Реакции электрофильного присоединения AdE

Характерны для углеводородов с ненасыщенными связями — алкенам, диенам, алкинам. Наиболее распространённой реакцией AdE является присоединение галогенов к кратной связи. Галогены выступают в роли электрофилов. Механизм присоединения рассмотрен на примере образования 1,2-дибромэтана, в результате взаимодействия этилена с бромом по реакции:

 .

Присоединение брома по кратной связи включает 3 стадии:

 
  1. Образование π-комплекса
    Молекула Br2 выступающая в роли электрофила взаимодействует с электронодонорной молекулой алкена, в результате образуется нестабильный интермедиат (промежуточное соединение) — π-комплекс. Стадия протекает быстро.
  2. Образование циклического бромониевого иона
    На этой стадии происходит преобразование π-комплекса в циклический бромониевый ион. В процессе образования этого циклического катиона происходит гетеролитический разрыв связи Br-Br и пустая р-орбиталь sp2-гибридизованного атома углерода перекрывается с р-орбиталью "неподелённой пары" электронов атома галогена, образуя циклический ион бромония.
  3. Нуклеофильная атака бромид-иона
    На последней, третьей стадии анион брома как нуклеофильный агент атакует один из атомов углерода бромониевого иона. Нуклеофильная атака бромид-иона приводит к раскрытию трехчленного цикла и образованию вицинального дибромида (от лат. vic — рядом). Эту стадию формально можно рассматривать как нуклеофильное замещение SN2 у атома углерода, где уходящей группой является катион брома Br+ .

Данный механизм относится к реакции бимолекулярного электрофильного присоединения AdE2

Присоединение галогеноводородов

Другой важной реакций электрофильного присоединения к ненасыщенным углеводородам является давно известное гидрогалогенирование.

Шкала электрофильностиПравить

Индекс электрофильности
Фтор 3.86
Хлор 3.67
Бром 3.40
Йод 3.09
Гипохлорит ион 2.52
Диоксид серы 2.01
Сероуглерод 1.64
Бензол 1.45
Натрий 0.88
Некоторые выбранные значения[2] (величина безразмерная).

Существуют несколько методов для ранжирования электрофилов в порядке их реактивности. Один из них это омега индекс — ω или индекс электрофильности, изобретённый американским физикохимиком Робертом Парром[2]. Омега индекс определяется как:

 

отношение квадрата   электроотрицательности, к так называемой   химической твёрдости. Это отношение соответствует уравнению нахождения электрической мощности:

 

где   это электрическое сопротивление и  напряжение. В этом смысле индекс электрофильности является своего рода мощностью того или иного электрофильного реагента. Индекс электрофильности величина безразмерная.


Индекс электрофильности также существует для свободных радикалов[3].

Электрофилы как канцерогеныПравить

Негативные проявления связанные с канцерогенами, возникают вследствие наличия у последних электрофильных свойств, они легко взаимодействуют с нуклеофильными группами азотистых оснований (NH2-группы), входящих в состав нуклеиновых кислот, в частности ДНК, образуя с ней ковалентно связанные (зачастую прочно) ДНК-аддукты[4]. Особенно это свойство выражено у генотоксических канцерогенов.

ПримечанияПравить

  1. Крам Д., Хэммонд Дж. Органическая химия. — М.: Мир, 1964. — 715 с.
  2. 1 2 Electrophilicity Index Parr, R. G.; Szentpaly, L. v.; Liu, S. J. Am. Chem. Soc.; (Article); 1999; 121(9); 1922-1924. DOI:10.1021/ja983494x
  3. Electrophilicity and Nucleophilicity Index for Radicals Freija De Vleeschouwer, Veronique Van Speybroeck, Michel Waroquier, Paul Geerlings, and Frank De Proft Org. Lett.; 2007; 9(14) pp 2721 - 2724; (Letter) DOI:10.1021/ol071038k
  4. Miller E. C. Some current perspectives on chemical carcinogenesis in human and experimental animals: presidential adress.. — С. p. 1479— 1496. — (1978).

См. такжеПравить