Хромосомная идеограмма Y-хромосомы человека

Y-хромосо́ма — одна из двух половых хромосом в системе хромосомного определения пола XY, которая встречается у многих животных, большинства млекопитающих, в том числе человека. Содержит ген SRY, определяющий мужской пол организма, а также гены, необходимые для нормального формирования сперматозоидов. Мутации в гене SRY могут привести к формированию женского организма с генотипом XY (синдром Свайера). Y-хромосома человека состоит из более чем 59 миллионов пар нуклеотидов.

Содержание

Общие сведенияПравить

Клетки большинства млекопитающих содержат две половых хромосомы: Y-хромосома и X-хромосома — у самцов, две X-хромосомы — у самок. У некоторых млекопитающих, например, утконоса, пол определяется не одной, а пятью парами половых хромосом[1]. При этом половые хромосомы утконоса имеют больше сходства с Z-хромосомой птиц[2], а ген SRY, вероятно, не участвует в его половой дифференциации[3].

В человеческой популяции клетки некоторых мужчин содержат две (реже несколько) X-хромосомы и одну Y-хромосому (см. синдром Клайнфельтера); или одну X-хромосому и две Y-хромосомы (XYY-синдром); клетки некоторых женщин содержат несколько, чаще три (см. Трисомия по X-хромосоме) или одну X-хромосомы (см. синдром Шерешевского — Тёрнера). В некоторых случаях наблюдается повреждение гена SRY (с формированием женского XY организма) или его копирование на X-хромосому (с формированием мужского XX-организма) (см. также Интерсексуальность).

Происхождение и эволюцияПравить

До появления Y-хромосомыПравить

У многих эктотермных («холоднокровных») позвоночных отсутствуют половые хромосомы. Если у них имеются два пола, то пол определяется в большей степени условиями среды, чем генетически. У некоторых из них, в частности рептилий, пол зависит от температуры инкубации; другие являются гермафродитами (то есть каждая особь содержит как мужские, так и женские гаметы).

ПроисхождениеПравить

Считается, что X- и Y-хромосомы произошли от пары идентичных хромосом[4], когда у древних млекопитающих возник ген, один из аллелей (одна из разновидностей) которого приводил к развитию мужского организма[5]. Хромосомы, несущие этот аллель, стали Y-хромосомами, а вторая хромосома в этой паре стала X-хромосомой. Таким образом, X- и Y-хромосомы изначально отличались лишь одним геном. C течением времени, гены, полезные для самцов и вредные (либо не имеющие никакого эффекта) для самок либо развивались в Y-хромосоме, либо перемещались в Y-хромосому в процессе транслокации[6].

Ингибирование рекомбинацииПравить

Доказано, что рекомбинация между X- и Y-хромосомами вредна — она приводит к появлению самцов без необходимых генов в Y-хромосоме и самок с ненужными или даже вредными генами, до этого находящимися только в Y-хромосоме. В результате, во-первых, полезные самцам гены накапливались возле генов, определяющих пол, и, во-вторых, рекомбинация в этой части хромосомы подавлялась для сохранения этого, присущего только самцам района[5]. С течением времени гены в Y-хромосоме повреждались (см. следующий раздел), после чего она теряла участки, не содержащие полезных генов, и процесс начинался в соседних участках. В результате многократного повторения этого процесса 95 % человеческой Y-хромосомы не способно к рекомбинации.

СжатиеПравить

Y-хромосома человека потеряла 1393 из 1438 изначально имеющихся в ней генов в процессе своего существования. При скорости потери генов 4,6 на миллион лет Y-хромосома человека потенциально может полностью потерять свою функцию в течение следующих 10 миллионов лет[7]. Сравнительный геномный анализ, однако, показывает, что многие виды млекопитающих испытывают подобную потерю функций в их гетерозиготных половых хромосомах. Дегенерация, возможно, является судьбой всех нерекомбинантных половых хромосом из-за трёх общих эволюционных сил: высокой скорости мутирования, неэффективного отбора и генетического дрейфа[8]. С другой стороны, недавние сравнения Y-хромосом человека и шимпанзе показали, что человеческая Y-хромосома не потеряла ни одного гена с момента дивергенции человека и шимпанзе около 6—7 миллионов лет назад[9], и потеряла только один ген с момента дивергенции человека и макаки-резус около 25 миллионов лет назад[10][11], что доказывает возможную ошибочность модели линейной экстраполяции.

Высокая скорость мутированияПравить

Человеческая Y-хромосома частично подвержена высокой скорости мутирования в связи со средой, в которой она находится. Y-хромосома передается исключительно через сперматозоиды, которые подвергаются множественным клеточным делениям в процессе гаметогенеза. Каждое клеточное деление предоставляет дополнительную возможность для накопления мутаций пар оснований. К тому же сперматозоиды находятся в высокоокислительной среде яичек, которая стимулирует усиление мутирования. Эти два условия вместе повышают риск мутирования Y-хромосомы в 4,8 раза по сравнению с остальным геномом[8].

Неэффективный отборПравить

При возможности генетической рекомбинации геном потомства будет отличаться от родительского. В частности, геном с меньшим числом вредных мутаций может быть получен из родительских геномов с большим числом вредных мутаций.

Если рекомбинация невозможна, то при появлении некой мутации можно ожидать, что она проявится и в будущих поколениях, так как процесс обратной мутации маловероятен. По этой причине при отсутствии рекомбинации количество вредных мутаций со временем увеличивается. Этот механизм называется храповиком Мёллера.

Часть Y-хромосомы (у человека — 95 %) неспособна к рекомбинации. Считается, что это — одна из причин, по которой она подвергается порче генов.

Возраст Y-хромосомыПравить

До недавних пор считалось, что X- и Y-хромосомы появились около 300 миллионов лет назад. Однако недавние исследования[12], в частности секвенирование генома утконоса[2], показывают, что хромосомное определение пола отсутствовало ещё 166 миллионов лет назад, при отделении однопроходных от других млекопитающих[3]. Эта переоценка возраста хромосомной системы определения пола базируется на исследованиях, показавших, что последовательности в X-хромосоме сумчатых и плацентарных млекопитающих присутствуют в аутосомах утконоса и птиц[3]. Более старая оценка базировалась на ошибочных сообщениях о наличии этих последовательностей в X-хромосоме утконоса[13][14].

Y-хромосома человекаПравить

У человека Y-хромосома состоит из более чем 59 миллионов пар нуклеотидов, что составляет почти 2 % от генома человека[15]. Хромосома содержит немногим более 86 генов[16], которые кодируют 23 белка. Наиболее значимым геном на Y-хромосоме является ген SRY, служащий генетическим «включателем» для развития организма по мужскому типу. Признаки, наследуемые через Y-хромосому, носят название голандрических.

Человеческая Y-хромосома не способна рекомбинироваться с X-хромосомой, за исключением небольших псевдоаутосомных участков на теломерах (которые составляют около 5 % длины хромосомы). Это реликтовые участки древней гомологии между X- и Y-хромосомами. Основная часть Y-хромосомы, которая не подвержена рекомбинации, называется NRY (англ. non-recombining region of the Y chromosome)[17]. Эта часть Y-хромосомы позволяет посредством оценки однонуклеотидного полиморфизма определить прямых предков по отцовской линии.

Последующая эволюцияПравить

В терминальных стадиях дегенерации Y-хромосомы другие хромосомы все чаще используют гены и функции, ранее связанные с ней. Наконец, Y-хромосома полностью исчезает, и возникает новая система определения пола. Несколько видов грызунов достигли этих стадий:

  • Научные исследования свидетельствуют, что закавказская морская полевка и некоторые другие виды грызунов полностью потеряли Y-хромосому и SRY. Некоторые из них перенесли гены, присутствующие на Y-хромосоме, на Х-хромосому. Рюкийская мышь имеет XO-генотип (синдром Шерешевского — Тёрнера), тогда как все слепушонки обладают генотипом XX.
  • Древесный и арктический лемминги и несколько видов в роде травных мышей характеризуются наличием фертильных самок, которые обладают генотипом, обычно кодирующим самцов XY, в дополнение к XX, с помощью различных модификаций К хромосомам X и Y.
  • Самки полевки ползучей с одной Х-хромосомой каждый производят только гаметы X, а самцы XY производят Y-гаметы или гаметы, лишенные какой-либо половой хромосомы, через неразделение.[18]

Вне семейства грызунов мунтжак чёрный развил новые X и Y-хромосомы через слияния родовых половых хромосом и аутосом.

Считается, что у людей Y-хромосома утратила почти 90 % своих изначальных генов и этот процесс продолжается, а её риск мутирования в пять раз выше, чем у других участков ДНК. В ходе исследований ученые пришли к выводу, что теоретически люди могут размножаться без Y-хромосомы. Вполне возможно, что Y-хромосома у людей исчезнет в ходе дальнейших эволюционных изменений.[19]

Соотношение полов 1:1Править

Принцип Фишера показывает, почему почти у всех видов, использующих половое размножение, соотношение полов составляет 1:1, а это означает, что в случае людей 50 % потомства получат Y-хромосому, а 50 % — нет. У. Д. Гамильтон дал следующее основное объяснение в своей статье 1967 года «Чрезвычайные соотношения полов»:

  1. Предположим, что мужские роды менее распространены, чем женские.
  2. Новорожденный мужчина имеет лучшие перспективы спаривания, чем новорожденная женщина, и поэтому может рассчитывать на то, что у них будет больше потомства.
  3. Поэтому родители, генетически настроенные для производства самцов, обычно имеют более чем среднее число внуков, рожденных от них.
  4. Поэтому гены для мужских тенденций распространяются, и мужские роды становятся более распространенными.
  5. По мере того, как отношение пола 1: 1 приближается, преимущество, связанное с производством самцов, угасает.
  6. Те же рассуждения имеют место, если женщины заменяют самцов.
  7. Следовательно, 1: 1 — равновесное соотношение.[20]

См. такжеПравить

ИсточникиПравить

  1. Grützner F, Rens W, Tsend-Ayush E et al. In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes (англ.) // Nature. — 2004. — Vol. 432. — P. 913–917. — DOI:10.1038/nature03021.
  2. 1 2 Warren WC, Hillier LDW, Graves JAM, et al. Genome analysis of the platypus reveals unique signatures of evolution (англ.) // Nature. — 2008. — Vol. 453. — P. 175–183. — DOI:10.1038/nature06936.
  3. 1 2 3 =Veyrunes F, Waters PD, Miethke P, et al. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes (англ.) // Genome Research. — 2008. — Vol. 18. — P. 965–973. — DOI:10.1101/gr.7101908.
  4. Lahn B. T., Page D. C. Four evolutionary strata on the human X chromosome. (англ.) // Science (New York, N.Y.). — 1999. — Vol. 286, no. 5441. — P. 964—967. — PMID 10542153. исправить
  5. 1 2 Graves J. A. Sex chromosome specialization and degeneration in mammals. (англ.) // Cell. — 2006. — Vol. 124, no. 5. — P. 901—914. — DOI:10.1016/j.cell.2006.02.024. — PMID 16530039. исправить
  6. Graves J. A., Koina E., Sankovic N. How the gene content of human sex chromosomes evolved. (англ.) // Current opinion in genetics & development. — 2006. — Vol. 16, no. 3. — P. 219—224. — DOI:10.1016/j.gde.2006.04.007. — PMID 16650758. исправить
  7. Graves J. A. The degenerate Y chromosome--can conversion save it? (англ.) // Reproduction, fertility, and development. — 2004. — Vol. 16, no. 5. — P. 527—534. — DOI:10.10371/RD03096. — PMID 15367368. исправить
  8. 1 2 Graves J. A. Sex chromosome specialization and degeneration in mammals. (англ.) // Cell. — 2006. — Vol. 124, no. 5. — P. 901—914. — DOI:10.1016/j.cell.2006.02.024. — PMID 16530039. исправить
  9. Hughes J. F., Skaletsky H., Pyntikova T., Minx P. J., Graves T., Rozen S., Wilson R. K., Page D. C. Conservation of Y-linked genes during human evolution revealed by comparative sequencing in chimpanzee. (англ.) // Nature. — 2005. — Vol. 437, no. 7055. — P. 100—103. — DOI:10.1038/nature04101. — PMID 16136134. исправить
  10. Мужская хромосома останется стабильной в ближайшие миллионы лет. МедНовости (24 февраля 2012). Проверено 16 мая 2017.
  11. Лидия Градова. Вымирание мужчин оказалось мифом. «Утро» (23 февраля 2012). Проверено 16 мая 2017.
  12. Jon Hamilton. Human Male: Still A Work In Progress (англ.). NPR (13 January 2010). Проверено 16 мая 2017.
  13. Grützner F., Rens W., Tsend-Ayush E., El-Mogharbel N., O'Brien P. C., Jones R. C., Ferguson-Smith M. A., Marshall Graves J. A. In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. (англ.) // Nature. — 2004. — Vol. 432, no. 7019. — P. 913—917. — DOI:10.1038/nature03021. — PMID 15502814. исправить
  14. Watson J. M., Riggs A., Graves J. A. Gene mapping studies confirm the homology between the platypus X and echidna X1 chromosomes and identify a conserved ancestral monotreme X chromosome. (англ.) // Chromosoma. — 1992. — Vol. 101, no. 10. — P. 596—601. — DOI:10.1007/BF00360536. — PMID 1424984. исправить
  15. Y chromosome. Genetics Home Reference. National Institutes of Health. Проверено 16 мая 2017.
  16. Ensembl Human MapView release 43 (англ.) (February 2007). Проверено 14 апреля 2007. Архивировано 13 марта 2012 года.
  17. Scientists Reshape Y Chromosome Haplogroup Tree Gaining New Insights Into Human Ancestry (англ.). ScienceDaily.com (3 April 2008). Проверено 16 мая 2017.
  18. Zhou, Q. (2008). «Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes». Genome Biology 9 (6): R98. DOI:10.1186/gb-2008-9-6-r98. PMID 18554412.
  19. Y-хромосома не нужна для размножения/National Geographic Russia, 3 февраля 2016
  20. (1967) «Extraordinary sex ratios». Science 156 (3774): 477–488. DOI:10.1126/science.156.3774.477. PMID 6021675. Bibcode1967Sci...156..477H.