Мультиоператорная группа

(перенаправлено с «Мультиоператорная алгебра»)

Мультиоператорная группа — произвольная алгебра, снабжённая групповой структурой, обобщающая понятия группы, кольца, тела, операторной группы[англ.] (которая, в свою очередь, обобщает модули над кольцами, в частности, векторные пространства).

Введена в 1956 году английским математиком Филипом Хиггинсом[1][2] как наиболее универсальная структура, в которой всякая конгруэнция представляется разложением на смежные классы по идеалам, а также для которой может быть определено понятие коммутанта.

Другие примеры мультиоператорых групп — почтикольцо и почтиполе[англ.]. Также изучены специальные универсальные классы мультиоператорных групп — мультиоператорные кольца[⇨] и мультиоператорные алгебры[⇨].

Определения править

Мультиоператорная группа или  -группа — алгебра  , образующая группу  , притом для всякой  -арной операции   выполнено  , то есть   образует подсистему в  . Принимается, что часть сигнатуры   не содержит нульарных операций. Иногда мультиоператорная группа называется по своей дополнительной сигнатуре —  -группа.

Нормальная подгруппа   группы   называется идеалом мультиоператорной группы  , если для любой  -арной операции  , произвольных   ( ) и   все элементы вида:

 

вновь принадлежат  . Может использоваться обозначение   по аналогии с обозначениями нормальной подгруппы и идеала кольца. Мультиоператорная группа называется простой, если у неё существует только два идеала — сама группа и нулевая подгруппа.

Коммутатор элементов   мультиоператорной группы   определяется как элемент  , обозначается  .

Коммутант мультиоператорной группы — идеал, порождённый всеми коммутаторами   и элементами вида:

 

для всякой  -арной операции   из дополнительной сигнатуры мультиоператорной группы.

Свойства идеала править

Для групп идеал мультиоператорной группы совпадает с понятием нормальной подгруппы, а для колец и структур на их основе — с понятием двустороннего идеала.

Всякий идеал мультиоператорной группы является её подсистемой. Пересечение любой системы идеалов   мультиоператорной группы   вновь является её идеалом, притом этот идеал   совпадает с подгруппой группы  , порождённой этими идеалами.

Основное свойство идеала — всякая конгруэнция на мультиоператорной группе описывается разложениями на смежные классы по некоторому идеалу, иными словами, о факторсистеме мультиоператорной группы (мультиоператорной факторгруппе) можно говорить как о конструкции, производящей новую мультиоператорную группу по её идеалу.

Специальные классы мультиоператорных групп править

Мультиоператрное кольцо — мультиоператорная группа  , аддитивная группа которой абелева и каждая  -арная операция   дистрибутивна относительно группового сложения:

 

для любых  .

Мультиоператорная алгебра — мультиоператорное кольцо, все унарные операции дополнительной сигнатуры   которой образуют поле  , притом структура является векторным пространством над этим полем и для всех  , всех  -арных операций арности больше единицы   и произвольных элементов   выполнено:

 .

Как и другие мультиоператорные структуры, в тексте часто идентифицируется дополнительной сигнатурой: мультиоператорная  -алгебра (в данном случае и для избежания неоднозначности между алгеброй над кольцом, специальным обобщением которой является, и алгеброй в универсальном смысле).

Идеалами мультиоператорных колец и алгебр являются подгруппы  , в которых наличие элемента   влечёт содержание в них также всех элементов вида  [3].

Примечания править

  1. P. J. Higgins. Groups with multiple operators (англ.) // Proceedings of the London Mathematical Society. — 1956. — Vol. 6, no. 3. — P. 366—416. — doi:10.1112/plms/s3-6.3.366.
  2. Курош, 1973, с. 114.
  3. Общая алгебра, 1991, с. 357.

Литература править

  • А. Г. Курош. Группы с мультиоператорами // Лекции по общей алгебре. — 2-е изд.. — М.: Наука, 1973. — С. 114—124. — 400 с. — 30 000 экз.
  • Артамонов В. А. . Глава VI. Универсальные алгебры // Общая алгебра / Под общ. ред. Л. А. Скорнякова. — М.: Наука, 1991. — Т. 2. — С. 295—367. — 480 с. — (Справочная математическая библиотека). — 25 000 экз. — ISBN 5-9221-0400-4.
  • И. М. Виноградов. Мультиоператорная группа // Математическая энциклопедия. — М.: Советская энциклопедия. — 1977—1985.