Отображение тент

Отображение тент в теории динамических систем задаётся следующим образом:

Для значений отображение тент переводит отрезок в себя, являясь динамической системой c дискретным временем. В частности, орбитой точки из интервала является последовательность  :

График общего случая отображения тент
График случая для 1, 2 и 3 итераций отображения тент

Несмотря на то, что отображение тент является довольно простой нелинейной динамической системой, оно демонстрирует ряд свойств, характерных и для более сложных систем: плотность периодических орбит, перемешивание, чувствительность к начальным условиям, т.е. хаотичность[1].

Свойства править

 
Орбиты отображения для  
 
Графики 1,2,3,4,5,6 итераций отображения тент для  
  • Если  ,   является притягивающей неподвижной точкой: система будет стремиться к нулю с устремлением времени в бесконечность при любом исходном значении   из отрезка  .
  • Если  , все   — неподвижные точки, а   — предпериодические точки единичного периода (после одной итерации переходят в неподвижные).
  • Если  , то отображение имеет две неподвижные точки:   и  . Причем обе из них будут неустойчивыми, то есть значения  , лежащие в окрестностях неподвижных точек, будут отдаляться от них с последующими итерациями. Более того, для таких значений  , в интервале   содержатся и периодические, и непериодические точки.
  • Если  , то система отображает множество интервалов из отрезка   в себя, и их объединение является множеством Жюлиа отображения тент, т.е. множеством точек, чьи орбиты неустойчивы.
    • увеличение показывает, что при μ ≈ 1, множество Жюлиа состоит из нескольких интервалов. На диаграммах видно 4 и 8 интервалов при достаточном увеличении.
 
Графики 1,2,3,4,5,6 итераций отображения тент для  
  • Если  , то интервалы из отрезка   сходятся и множество Жюлиа — это весь интервал   (см. бифуркационную диаграмму).
 
Графики 1,2,3,4,5,6 итераций отображения тент для  
  • Если  , то система переводит отрезок [0;1] в себя. В этом случае периодические точки плотны на отрезке, так что отображение демонстрирует хаотичность[2]. Непериодическое поведение характерно только для иррациональных чисел, что может быть показано с помощью механизма, которым отображение действует на представленное в двоичной записи число: оно перемещает двоичную запятую вправо на один знак, а затем, если то, что оказалось слева от запятой — это единица, отбрасывает её и обращает все единицы в нули и наоборот (кроме последней единицы для чисел с конечной двоичной записью). Для иррационального числа, двоичная запись которого непериодична, это бесконечный процесс. Кроме того, стоит обратить внимание, что для   отображение тент топологически сопряжено логистическому отображению для   и полусопряжен   отображению удвоения, что указывает на сходство динамических свойств этих отображений[3]. Действительно, пусть   — орбита отображения тент при  , а   — орбита логистического отображения для  , тогда они связаны соотношением:  .
  • Если  , множество Жюлиа отображения все еще содержит бесконечное количество и периодических, и непериодических точек, но почти всюду точки отрезка   стремятся к бесконечности. Само множество становится канторовым. В частности, множество Жюлиа отображения тент для   — стандартное канторово множество.

Асимметричное отображение тент править

Также объектом изучения теории динамических систем является асимметричное отображение тент  . Его можно считать расширением случая   стандартного отображения тент:

 

Асимметричное отображение тент сохраняет вид кусочно-линейной функции и может быть использовано для представления вещественных чисел из   по аналогии с десятичной записью[4].

См. также править

Литература править

  1. Lynch, Stephen. "Nonlinear discrete dynamical systems." Dynamical Systems with Applications using Maple. Birkhäuser Boston, 2010. 263-295.
  2. Li, Tien-Yien, and James A. Yorke. "Period three implies chaos." American mathematical monthly (1975): 985-992.
  3. Smale, Stephen, Morris W. Hirsch, and Robert L. Devaney. "Discrete dynamical systems." Differential equations, dynamical systems, and an introduction to chaos. Vol. 60. Academic Press, 2003. 327-357.
  4. Lagarias, J. C., H. A. Porta, and K. B. Stolarsky. "Asymmetric tent map expansions. I. Eventually periodic points." Journal of the London Mathematical Society 2.3 (1993): 542-556.