Теневое исчисление

Теневое исчисление (от англ. Umbral calculus, далее от лат. umbra — «тень») — математический метод получения некоторых алгебраических тождеств. До 1970-х термин относился к схожести некоторых внешне несвязанных алгебраических тождеств, а также к техникам, использованных для доказательства этих тождеств. Эти техники предложил Джон Блиссард[1] и они иногда называются символическим методом Блиссарда. Их часто приписывают Эдуарду Люка (или Джеймсу Джозефу Сильвестру), которые их интенсивно использовали[2].

В 1930-х и 1940-х Эрик Темпл Белл пытался поставить теневое исчисление на строгое основание.

В 1970-х Стивен Роман, Джан-Карло Рота и другие разработали теневое исчисление в смысле линейных функционалов на пространстве многочленов. В настоящее время теневое исчисление относится к изучению последовательностей Шеффера[en], включая последовательности многочленов биномиального типа[en] и последовательности Аппеля, но может включать техники исчисления конечных разностей.

Теневое исчисление в 19-м столетии править

Метод является процедурой обозначений, используемых для получающихся тождеств, вовлекающих индексированные последовательности чисел, предполагая, что индексы являются степенями. Буквальное использование абсурдно, но работает успешно — тождества, полученные с помощью теневого исчисления, могут быть должным образом получены с помощью более сложных методов, которые могут быть использованы буквально без логических трудностей.

Пример использует многочлены Бернулли. Рассмотрим, например, обычное биномиальное разложение (которое содержит биномиальные коэффициенты):

 

и удивительно похоже выглядящее соотношение для многочленов Бернулли:

 

Также сравним первую производную

 

с очень похожим отношением для многочленов Бернулли:

 

Эти сходства позволяют построить теневые доказательства, которые, на первый взгляд, не могут быть верны, но всё же работают. Так, для примера, если считать, что индекс   является степенью:

 

после дифференцирования получаем желаемый результат:

 

В формулах выше   является «umbra» (латинское слово, обозначающее «тень»).

См. также Формула Фаульхабера.

Теневые ряды Тейлора править

Похожие связи наблюдались также в теории конечных разностей. Теневая версия ряда Тейлора задаётся подобными выражениями, использующими  -ые правосторонние разности   многочлена  ,

 

где

 

символ Похгаммера, используемый здесь для обозначения убывающего факториала. Похожее соотношение имеет место для левосторонних разностей и возрастающих факториалов.

Эти ряды известны также как ряды Ньютона или правостороннее разложение Ньютона. Аналог разложения Тейлора используется в исчислении конечных разностей.

Белл и Риордан править

В 1930-х и 1940-х годах Эрик Темпл Белл безуспешно пытался сделать такого рода аргументацию логически строгой. Джон Риордан, работавший в области комбинаторики, в своей книге Combinatorial Identities (Комбинаторные тождества), опубликованной в 1960-х годах, использовал данную технику интенсивно.

Современное теневое исчисление править

Другой учёный в области комбинаторики, Джиан-Карло Рота, указал на то, что таинственность исчезает, если рассматривать линейный функционал   над многочленами от  , определённый как

 

Тогда, используя определение многочленов Бернулли и определение линейности  , можно записать

 

Это позволяет заменить вхождение   на  , то есть перенести   из нижнего индекса в верхний (ключевая операция теневых исчислений). Например, мы можем теперь доказать, что

 

путём разложения правой части

 

Рота позднее утверждал, что много путаницы получились из-за неудач в различении трёх отношений эквивалентности, которые возникают в этой области.

В статье 1964 года Рота использовал теневые методы для установления формулы рекурсии, которой удовлетворяют числа Белла, которые подсчитывают число разбиений конечных множеств.

В статье Романа и Роты[3] теневое исчисление описывается как изучение теневой алгебры (umbral algebra), определённой как алгебра линейных функционалов над векторным пространством многочленов от   с произведением   линейных функционалов, определённым как

 

Если последовательность многочленов заменяет последовательность чисел как образы   при линейном отображении  , теневой метод выглядит как существенная составляющая общей теории Рота специальных многочленов и эта теория является теневым исчислением при некоторых более современных определениях этого термина[4]. Небольшой пример этой теории можно найти в статье о последовательности многочленов биномиального типа[en]. Другая статья — Последовательность Шеффера[en].

Позднее Рота применял теневое исчисление интенсивно в совместной статье с Шеном для изучения различных комбинаторных свойств полуинвариантов[5].

Примечания править

  1. Blissard, 1861.
  2. Bell, 1938, с. 414–421.
  3. Roman, Rota, 1978, с. 95–188.
  4. Rota, Kahaner, Odlyzko, 1973, с. 684.
  5. Rota, Shen, 2000, с. 283–304.

Литература править

  • Bell E. T. The History of Blissard's Symbolic Method, with a Sketch of its Inventor's Life // The American Mathematical Monthly. — Mathematical Association of America, 1938. — Т. 45, вып. 7. — С. 414–421. — ISSN 0002-9890. — JSTOR 2304144.
  • John Blissard. Theory of generic equations // The quarterly journal of pure and applied mathematics. — 1861. — Т. 4. — С. 279–305.
  • Steven M. Roman, Gian-Carlo Rota. The umbral calculus // Advances in Mathematics. — 1978. — Т. 27, вып. 2. — С. 95–188. — ISSN 0001-8708. — doi:10.1016/0001-8708(78)90087-7.
  • Rota G. C., Kahaner D., Odlyzko A. On the foundations of combinatorial theory. VIII. Finite operator calculus // Journal of Mathematical Analysis and its Applications. — 1973. — Июнь (т. 42, вып. 3). — С. 684. — doi:10.1016/0022-247X(73)90172-8. Перепечатано в книге с тем же названием, Academic Press, New York, 1975.
  • Steven Roman. The umbral calculus. — London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], 1984. — Т. 111. — (Pure and Applied Mathematics). — ISBN 978-0-12-594380-2.. Reprinted by Dover, 2005.
  • Roman S. Umbral calculus // Encyclopedia of Mathematics / Michiel Hazewinkel. — Springer Science+Business Media B.V. / Kluwer Academic Publishers, 2001. — ISBN 978-1-55608-010-4.
  • Rota G.-C. , Shen J. On the Combinatorics of Cumulants // Journal of Combinatorial Theory. — 2000. — Т. 91. — С. 283–304.

Ссылки править