Особая точка кривой

(перенаправлено с «Узловая точка»)

Особая точка кривой — точка, в окрестности которой не существует гладкой параметризации. Точное определение зависит от типа изучаемой кривой.

Алгебраические кривые на плоскости править

Алгебраическую кривую на плоскости можно определить как множество точек  , удовлетворяющих уравнению вида  , где   — полиномиальная функция  :

 .

Если начало координат   принадлежит кривой, то  . Если  , то теорема о неявной функции гарантирует существование гладкой функции  , такой что кривая принимает вид   в окрестности начала координат. Аналогично, если  , то существует такая функция  , что кривая удовлетворяет уравнению   в окрестности начала координат. В обоих случаях существует гладкое отображение  , которое определяет кривую в окрестности начала координат. Заметим, что в окрестности начала координат

 

Особые точки кривой — это те точки кривой, в которых обе производные обращаются в ноль:

 

Регулярные точки править

Пусть кривая проходит через начало координат. Положив  , можно представить   в виде

 .

Если  , то уравнение   имеет решение кратности 1 в точке   и начало координат является точкой одиночного контакта кривой с прямой  . Если  , то   имеет в точке   решение кратности 2 или выше и прямая   является касательной к кривой. В этом случае, если  , кривая имеет двойной контакт с прямой  . Если  , а коэффициент при   не равен нулю, то начало координат является точкой перегиба кривой. Это рассуждение может быть применено к любой точке кривой путём переноса начала координат в заданную точку.[1]

Двойные точки править

 
Три улитки Паскаля иллюстрируют типы двойных точек. Левая кривая имеет изолированную точку в начале координат. Центральная кривая, кардиоида, имеет касп в начале координат. Правая кривая имеет в начале координат точку самопересечения, образуя петлю.

Если в вышеприведённом уравнении   и  , но по крайней мере одна из величин  ,   или   не равна нулю, то начало координат называется двойной точкой кривой. Снова положим  , тогда   примет вид

 

Двойные точки можно классифицировать по корням уравнения  .

Точки самопересечения править

Если уравнение   имеет два вещественных решения по  , то есть, если  , то начало координат называется точкой самопересечения[англ.]. Кривая в этом случае имеет две различные касательные, соответствующие двум решениям уравнения  . Функция   в этом случае имеет седловую точку в начале координат.

Изолированные точки править

Если уравнение   не имеет вещественных решений по  , то есть, если  , то начало координат называется изолированной точкой. На вещественной плоскости начало координат окажется изолировано от кривой, однако на комплексной плоскости начало координат изолировано не будет и будет иметь две мнимых касательных, соответствующих двум мнимым решениям уравнения  . Функция   в этом случае имеет локальный экстремум в начале координат.

Каспы править

Если уравнение   имеет одно вещественное решение по   кратности 2, то есть, если  , то начало координат называется каспом, или точкой возврата. Кривая в этом случае в особой точке меняет направление, образуя остриё. Кривая в начале координат имеет единственную касательную, что можно трактовать как две совпадающие касательные.

Дальнейшая классификация править

Термин узел (англ. node) используется как общее название для изолированных точек и точек самопересечения. Число узлов и число каспов кривой являются двумя инвариантами, используемыми в формулах Плюккера.

Если одно из решений уравнения   является также решением уравнения  , то соответствующая ветвь кривой имеет перегиб в начале координат. В этом случае начало координат называется точкой самокасания. Если обе ветви имеют это свойство, то   является делителем  , и начало координат называется биффлектоидальной точкой (точкой двойного соприкосновения).[2]

Многократные точки править

 
Кривая с тройной точкой в начале координат.

В общем случае при равенстве нулю всех членов со степенью, меньшей  , и при условии, что хотя бы один член со степенью   не равен нулю, говорят, что кривая имеет многократную точку порядка k. В этом случае кривая имеет   касательных в начале координат, но некоторые из них могут быть мнимыми или совпадать.[3]

Параметрические кривые править

Параметрическая кривая в R2 определяется как образ функции g: RR2, g(t) = (g1(t), g2(t)). Особые точки такой кривой — это точки, в которых

 
 
Касп

Многие кривые можно задать в обоих видах, но эти два задания не всегда согласуются. Например, касп можно найти как у алгебраической кривой x3y2 = 0, так и параметрической кривой g(t) = (t2, t3). Оба задания кривой дают особую точку в начале координат. Однако точка самопересечения[англ.] кривой y2x3x2 = 0 в начале координат является особой для алгебраической кривой, но при параметрическом задании g(t) = (t2−1,t(t2−1)) пара производных g′(t) никогда не обращается в ноль, а потому точка не является особой в вышеуказанном смысле.

Следует соблюдать осторожность при выборе параметризации. Например, прямую y = 0 можно задать параметрически как g(t) = (t3, 0) и она будет иметь особую точку в начале координат. Если же её же параметризовать как g(t) = (t, 0), она не будет иметь особых точек. Таким образом, технически более корректно говорить об особых точках гладкого отображения, а не об особых точках кривой.

Вышеуказанные определения можно распространить на неявные кривые, которые можно определить как множество нулей f−1(0) произвольной гладкой функции. Определения также можно распространить на кривые в пространствах более высоких размерностей.

Согласно теореме Хасслера Уитни,[4][5] любое замкнутое множество в Rn является множеством решений f−1(0) для некоторой гладкой функции f: RnR. Следовательно, любая параметрическая кривая может быть задана как неявная кривая.

Типы особых точек править

Примеры особых точек различных типов:

См. также править

Примечания править

  1. Hilton Chapter II § 1
  2. Hilton Chapter II § 2
  3. Hilton Chapter II § 3
  4. Brooker and Larden. Differential Germs and Catastrophes. — London Mathematical Society. Lecture Notes 17. Cambridge. — 1975.
  5. Bruce and Giblin, Curves and singularities, (1984, 1992) ISBN 0-521-41985-9, ISBN 0-521-42999-4 (paperback)

Литература править