Жергонн, Жозеф Диас

Жозеф Диас Жергонн (фр. Joseph Diaz Gergonne; 19 апреля 1771, Нэнси — 4 мая 1859, Монпелье — французский математик и геометр, внёсший фундаментальный вклад в развитие этих наук.

Жозеф Диас Жергонн
Joseph Diaz Gergonne
[1]
Дата рождения 19 июня 1771(1771-06-19)[1][2][…]
Место рождения
Дата смерти 4 мая 1859(1859-05-04)[2][4] (87 лет)
Место смерти
Страна
Научная сфера математика, геометрия, логика
Место работы
Научный руководитель Монж
Commons-logo.svg Медиафайлы на Викискладе

БиографияПравить

Учился математике в Ниме в одно и то же время с математиком Вектеном.

В 1791 Жергонн завербовался во французскую армию как капитан. Та армия подвергалась быстрому расширению, потому что французское правительство боялось, что иностранное вторжение намеревалось уничтожить Французскую революцию и вернуть Людовика XVI к власти. Он участвовал в главном сражении в Вальми 20 сентября 1792. Затем возвратился к гражданской жизни, но скоро был призван снова и принял участие в французском вторжении 1794 года в Испанию.

В 1795 Жергонн и его полк послали в Ним. В этом местечке он принял окончательное решение об отказе от военной службы и переходе к гражданской жизни. Он принял пост председателя «необыкновенной математики» в новой Центральной школе гражданских инженеров (École Centrale des arts et manufactures). Туда он приехал под влиянием Гаспара Монжа, Директора Политехнической школы (фр. École Polytechnique) — знаменитой высшей школы для подготовки инженеров, основанной французскими учёными Гаспаром Монжем и Лазаром Карно в 1794 году

В 1810, в ответ на трудности в попытке опубликовать свою работу Жергонн начал издавать свой журнал математики, официально названный Annales de mathématiques pures и appliquées. Он стал известен как Annales de Gergonne (Анналы Жергонна). Этот журнал издавался в течение 22 лет. В основном в нём печатались работы, посвященные геометрии, как основной области интересов Жергонна. В течение 22 лет в Анналах Жергонна (Annales de Gergonne) было опубликовано приблизительно 200 статей непосредственно Жергонна. В нём также печатались работы многих известных математиков: Понселе (Poncelet), Плюкера (Plücker), Брианшона (Brianchon), Штейнера (Steiner), Галуа (Galois), Ламе (Lamе́), Шаля (Chasles), Дюпена (Dupin), Сервуа[fr] (Servois), Бобилье[fr] (Bobillier) и др.

В 1813, Жергонн написал по конкурсу эссе для Бордоской Академии, где изложил методы синтеза и анализа в математике. Оно не опубликовано по сей день и известно только через резюме. Эссе раскрывает философские идеи Жергонна. Он призывает к отказу от анализа и синтезу слов, утверждая, что слова могут иметь недостаток точного смысла. Удивительно для топографа, он предположил, что алгебра более важна чем геометрия, в то время, когда алгебра состояла почти полностью из элементарной алгебры реальной области. Он предсказал, что однажды квази-механические методы будут использоваться для обнаружения новых результатов.

В 1815 Жергонн написал первую работу об оптимальном планировании экспериментов (The design experiment) для множественной регрессии (The multiple regression) — кривой отклика.

В 1816 Жергонн был назначен на пост председателя отдела астрономии в университете Монпелье.

С 1830 по 1844 он был ректором университета Монпелье. К тому времени он прекратил издавать свой журнал.

ДостиженияПравить

  • Жергонн был первым математиком, который ввел термин поляра и принцип двойственности в проективную геометрию. В серии статей, начинающихся в 1810 г., он обнаружил принцип дуальности в проективной геометрии, замечая, что каждой теореме контакта на плоскости точек и линий соответствует другая теорема, в которой меняются местами точки и линии, при условии, что теорема не изменила метрических понятий.
  • В 1816, он разрабатывал изящное решение задачи Аполлония (Apollonius): построить окружность, которая касается трех данных окружностей.
  • Согласно С. М. Стиглеру, Жергонн — пионер методологии оптимального планирования экспериментов.
  • В геометрии известна точка Жергонна. Точкой Жергонна называется точка пересечения отрезков, которые соединяют вершины треугольника с точками касания сторон, противоположных этим вершинам, и вписанной в треугольник окружности.
  • Известна теорема Жергонна для трех чевиан треугольника, пересекающихся в одной точке:
  • Теорема Жергонна. Пусть три чевианы AD,BE и CF пересекаются в точке K внутри треугольника ABC. Тогда выполняются следующие равенства:
 
 

ЦитатаПравить

Слова Жергонна о математических теориях: Нельзя хвастаться тем, что ты сказал последнее слово в какой-либо теории, если не можешь объяснить её несколькими словами первому встречному на улице.[5] «On ne peut se flatter d’avoir le dernier mot d’une théorie, tant qu’on ne peut pas l’expliquer en peu de paroles à un passant dans la rue.»[6]

ЛитератураПравить

ПримечанияПравить

ИсточникиПравить