Открыть главное меню
Пример параметрической кривой.

Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр.

Параметрическое представление функцииПравить

Предположим, что функциональная зависимость y от x не задана непосредственно y = f(x), а через промежуточную величину — t. Тогда формулы

    

задают параметрическое представление функции одной переменной.

Если предположить, что обе эти функции φ и ψ имеют производные и для φ существует обратная функция θ, явное представление функции выражается через параметрическое как[1]:

 

и производная функции может быть вычислена как

 

Параметрическое представление даёт такое важное преимущество, что позволяет изучать неявные функции в тех случаях, когда их приведение к явному виду иначе как через параметры затруднительно.

Параметрическое представление уравненияПравить

Параметрическое представление для более общего случая: когда переменные связаны уравнением (или системы уравнений, если переменных больше двух).

Параметрическое уравнениеПравить

Близкое понятие — параметрическое уравнение[2] множества точек, когда координаты точек задаются как функции от некоторого набора свободных параметров. Если параметр один, мы получим параметрическое уравнение кривой.

  (кривая на плоскости),
  (кривая в 3-мерном пространстве),

Выражая координаты точек поверхности через два свободных параметра, мы получим параметрическое задание поверхности.

ПримерыПравить

Уравнение окружности имеет вид:

 

Параметрическое уравнение окружности:

 
 

Гипербола описывается следующим уравнением:

 

Параметрическое уравнение правой ветви гиперболы :

  

См. такжеПравить

СсылкиПравить

ПримечанияПравить

  1. Г. М. Фихтенгольц. «Курс дифференциального и интегрального исчисления». Том I. Москва 1969 г. Стр 218
  2. Математическая энциклопедия. — М.: Советская энциклопедия, 1984. — Т. 5. — С. 221—222.