Сверхрешётка

(перенаправлено с «Сверхрешетка»)

Сверхрешётка — в физике полупроводников — твердотельная структура, в которой помимо периодического потенциала кристаллической решётки имеется дополнительный периодический потенциал, период которого существенно превышает постоянную решётки[1].

Сверхрешётка GaAs/AlAs и профиль дна зоны проводимости и потолка валентной зоны перпендикулярно слоям сверхрешётки.  — ширины запрещённой зоны разных полупроводников.

Виды сверхрешёток

править

Различают следующие виды сверхрешёток:

  • Композиционные сверхрешётки — эпитаксиально выращенные периодически чередующиеся тонкие слои полупроводников с различной шириной запрещённой зоны[2].
  • Легированные сверхрешётки — периодический потенциал образуется путём чередования ультратонких слоёв n- и p-типов полупроводника, которые отделяются друг от друга нелегированными слоями[3].
  • Спиновы́е сверхрешётки — образованные периодическим чередованием слоёв одного и того же полупроводника. Одни слои легируются немагнитными примесями, а другие — магнитными. Без магнитного поля энергетическая щель во всей сверхрешётке постоянна, периодический потенциал возникает при наложении магнитного поля[4].
  • Сверхрешётки, сформированные в двумерном электронном слое (например в системе МДП: металл-диэлектрик-полупроводник) путём периодической модуляции плоскости поверхностного заряда.
  • Сверхрешётки, потенциал в которых создаётся периодической деформацией образца в поле мощной ультразвуковой или стоячей световой волны.

Наряду со сверхрешётками из полупроводников, существуют также магнитные сверхрешётки и сегнетоэлектрические сверхрешётки.

Первооткрывателями твердотельных полупроводниковых сверхрешёток являются Тсу и Эсаки.

Применение

править

В микроэлектронике сверхрешётки применяются для создания генераторных, усилительных и преобразовательных устройств в милли- и субмиллиметровом диапазоне волн. Переход к использованию элементов микроэлектроники на основе сверхрешёток необходим при размерах элементов менее 0,3 мкм, когда традиционные транзисторные структуры окажутся неработоспособными[привести цитату? 1410 дней] из-за фундаментальных физических ограничений[5]

Примечания

править
  1. Бузанева, 1990, с. 203—241.
  2. Бузанева, 1990, с. 205—209.
  3. Бузанева, 1990, с. 210—213.
  4. Бузанева, 1990, с. 231—233.
  5. Бузанева, 1990, с. 235—241.

См. также

править

Литература

править
  • R. Tsu and L. Esaki. Tunneling in a finite superlattice (англ.) // Applied Physics Letters. — 1973. — Vol. 22. — P. 562. — doi:10.1063/1.1654509.
  • Бузанева Е. В. Микроструктуры интегральной электроники. — М.: Радио и связь, 1990. — 304 с.