Электро́ника (от греч. Ηλεκτρόνιο «электрон») — область науки и техники, занимающаяся созданием и практическим использованием различных электронных устройств и приборов[1], работа которых основана на изменении концентрации и перемещении заряженных частиц (электронов) в вакууме, газе или твердых кристаллических телах, и других физических явлениях (НБИК).

Различные электронные компоненты

Также — сокращенное именование электронной аппаратуры.

История править

Возникновению электроники предшествовало открытие и изучение электричества, электромагнетизма, а далее — изобретение радио. Поскольку радиопередатчики сразу же нашли применение (в первую очередь на кораблях и в военном деле), для них потребовалась элементная база, созданием и изучением которой и занялась электроника. Элементная база первого поколения была основана на электронных лампах. Соответственно получила развитие вакуумная электроника. Её развитию способствовало также изобретение телевидения и радаров, которые нашли широкое применение во время Второй мировой войны[2][3].

Но электронные лампы обладали существенными недостатками. Это, прежде всего, большие размеры и большая потребляемая мощность (что было критичным для переносных устройств). Поэтому начала развиваться твердотельная электроника, а в качестве элементной базы стали применять диоды и транзисторы.

Дальнейшее развитие электроники связано с появлением компьютеров. Компьютеры, основанные на транзисторах, отличались большими размерами и потребляемой мощностью, а также низкой надежностью (из-за большого количества деталей). Для решения этих проблем начали применяться микросборки, а затем — и микросхемы. Число элементов микросхем постепенно увеличивалось, стали появляться микропроцессоры. В настоящее время развитию электроники способствует появление сотовой связи, а также различных беспроводных устройств, навигаторов, коммуникаторов, планшетов и т. п.

В России вкладом в появление и развитие электроники стали научная деятельность А. С. Попова и начало применения аппаратуры беспроводного телеграфа, изобретение лампового триггера М. Бонч-Бруевичем в 1918 году[4], использование Лосевым полупроводникового элемента для усиления и генерации электрических сигналов[5], использование проводниковых и полупроводниковых элементов в работах Иоффе и развитие полупроводниковой базы GaAs/AlAs и их тройных растворов в лаборатории Алфёрова[6].

До появления электронно-вычислительных машин логические операции выполняли на электромеханических или механических реле. В 1943 году электромеханический компьютер Mark-1 производил одну операцию сложения за 0,3 сек[7]. Но уже в середине XX века начали использовать изобретённый Либеном (1912)[8] и Ли де Форестом (1906) электровакуумный прибор — триод[4], током которого можно было управлять с помощью сетки, что позволяло управлять сигналом[9]. В 1939 году появился первый компьютер на вакуумных лампах (Дж. Атанасов), где вычисления производились с помощью логических операций[10]. В 1946 году появилась электровакуумная ЭВМ Эниак, содержащая 17 468 ламп, которые надо было проверять при установке. Эта машина могла выполнять 5000 операций сложения в секунду[11].

Появление первого транзистора в 1947 году, созданного Уильямом Шокли, Джоном Бардином и Уолтером Браттейном позволило перейти на твердотельную логику[12], а последующее изобретение структуры металл-окисел-полупроводник стало самой главной вехой в развитии электроники[13], что привело к созданию интегральной схемы и последующему развитию микроэлектроники, основной области современной электроники[14][15].

Области электроники править

Можно различать следующие области электроники:

Электронное устройство может включать в себя самые разные материалы и среды, где происходит обработка электрического сигнала с использованием разных физических процессов. Но в любом устройстве обязательно имеется электрическая цепь.

Изучению различных аспектов электроники посвящены многие научные дисциплины технических вузов.

Твердотельная электроника править

История твердотельной электроники править

Термин «твердотельная электроника» появился в литературе в середине XX века для обозначения устройств на полупроводниковой элементной базе: транзисторах и полупроводниковых диодах, заменивших громоздкие малоэффективные электровакуумные приборы — радиолампы. Корень «тверд» использован здесь, потому что процесс управления электрическим током происходит в твёрдом теле полупроводника в отличие от вакуума, как это происходило в электронной радиолампе. Позднее, в конце XX века этот термин потерял своё значение и постепенно вышел из употребления, поскольку практически вся электроника нашей цивилизации начала использовать исключительно полупроводниковую твердотельную активную элементную базу.

Миниатюризация устройств править

С рождением твердотельной электроники начался революционно быстрый процесс миниатюризации электронных приборов. За несколько десятков лет активные элементы очень сильно уменьшились: если размеры ламп составляли несколько сантиметров, размеры транзисторов на полупроводниковых кристаллах современных интегральных схем составляют десятки нанометров. Современные микросхемы могут содержать несколько миллиардов таких транзисторов.

Технология получения элементов править

Активные и пассивные элементы в твердотельной электронике создаются на однородном сверхчистом кристалле полупроводника, чаще всего кремния, методом инжекции или напыления новых слоев в определённых координатах тела кристалла атомов иных химических элементов, молекул более сложных, в том числе и органических, веществ. Инжекция меняет свойства полупроводника в месте инжекции (легирования) меняя его проводимость на обратную, создавая таким образом диод или транзистор или пассивный элемент: резистор, проводник, конденсатор или катушку индуктивности, изолятор, теплоотводящий элемент и другие элементы. В последние годы широко распространилась технология производства источников света на кристалле. Огромное количество открытий и разработанных технологий использования твердотельных технологий ещё лежат в сейфах патентообладателей и ждут своего часа.

Технологию получения полупроводниковых кристаллов, чистота которых позволяет создавать элементы размером в несколько нанометров, стали называть нанотехнологией, а раздел электроники — наноэлектроникой.

В 1970-е годы в процессе миниатюризации твердотельной электроники в ней наметился раскол на аналоговую и цифровую микроэлектронику. В условиях конкуренции на рынке производителей элементной базы победу одержали производители цифровой электроники. И в XXI веке производство и эволюция аналоговой электроники практически были остановлены. Так как в реальности все потребители микроэлектроники требуют от неё, как правило не цифровые, а непрерывные аналоговые сигналы или действия, цифровые устройства снабжены ЦАП-ами на своих входах и выходах.

Миниатюризация электронных схем сопровождалась ростом быстродействия устройств. Так первые цифровые устройства ТТЛ технологии требовали микросекунды на переключение из одного состояния в другое и потребляли большой ток, требовавший специальных мер для отвода тепла.

В начале XXI века эволюция твердотельной электроники в направлении миниатюризации элементов постепенно замедлилась и в настоящее время практически остановлена. Эта остановка была предопределена достижением предельно малых размеров транзисторов, проводников и других элементов на кристалле полупроводника, ещё способных отводить выделяемое при протекании тока тепло и не разрушаться. Эти размеры достигли единиц нанометров, и поэтому технология изготовления микросхем называется нанотехнологией.

Следующим этапом в эволюции электроники возможно станет оптоэлектроника, в которой несущим элементом выступит фотон, значительно более подвижный, менее инерционный, чем электрон и «дырка» в полупроводнике твердотельной электроники.

Основные твердотельные приборы править

Основные твердотельные активные приборы, используемые в электронных устройствах:

  • Диод — проводник с односторонней проводимостью от анода к катоду. Разновидности: туннельный диод, лавинно-пролётный диод, диод Ганна, диод Шоттки и др.;
  • Биполярные транзисторы — транзисторы с двумя физическими p-n-переходами, ток коллектор-эмиттер которого управляется током база-эмиттер;
  • Полевой транзистор — транзистор, ток исток-сток которого управляется напряжением на p-n- или n-p-переходе затвор-сток или потенциалом на нём в транзисторах без физического перехода — с затвором, гальванически изолированным от канала сток-исток;
  • Диоды с управляемой проводимостью (динисторы и тиристоры), используемые как переключатели, светодиоды и фотодиоды, используемые как преобразователи электромагнитного излучения в электрические сигналы или электрическую энергию или обратно;
  • Интегральная микросхема — комбинация активных и пассивных твердотельных элементов на одном или нескольких кристаллах в одном корпусе, электронная схема в аналоговой и цифровой микроэлектронике.

Примеры использования править

Примеры использования твердотельных приборов в электронике:

Основные различия аналоговой и цифровой электроники править

также см.: Цифровая электроника

Поскольку в аналоговых и цифровых схемах информация кодируется по-разному, у них отличаются и процессы обработки сигналов. При этом все операции, которые могут быть совершены над аналоговым сигналом (в частности, усиление, фильтрация, ограничение диапазона и т.п.) могут быть осуществлены и методами цифровой электроники и программного моделирования в микропроцессорах.

Основное различие аналоговой от цифровой электроники можно найти в наиболее характерных для той или иной электроники способах кодирования информации.

Аналоговая электроника использует простейшее пропорциональное одномерное кодирование — отражение физических параметров источника информации в аналогичные физические параметры электрического поля или напряжения (амплитуды в амплитуды, частоты в частоты, фазы в фазы и т. д.).

Цифровая электроника использует n-мерное кодирование физических параметров источника данных. Минимально в цифровой электронике используется двумерное кодирование: напряжение (ток) и моменты времени. Данная избыточность принята исключительно для гарантированной передачи данных с любым программируемым уровнем добавленных в устройстве шумов и искажений в исходный сигнал. В более сложных цифровых схемах используется методы программной микропроцессорной обработки информации. Методы цифровой передачи данных позволяют реально создавать физические каналы передачи данных абсолютно без потерь (без возрастания шумов и других искажений)

В физическом же смысле поведение всякой цифровой электронной схемы и всего устройства ничем не отличается от поведения аналогового электронного устройства или схемы и может быть описано теорией и правилами, описывающими функционирование аналоговых электронных устройств.

Шум править

В соответствии со способом кодирования информации в аналоговых схемах они в существенно большей степени уязвимы для воздействия шума, нежели цифровые цепи. Малое изменение сигнала может внести значительные искажения в передаваемую информацию и в конечном счёте привести к её утрате; в свою очередь, цифровые сигналы принимают лишь одно из двух возможных значений, и для того, чтобы вызвать ошибку, помеха должна составлять примерно половину их общей величины. Это свойство цифровых схем может быть использовано для повышения устойчивости сигналов к помехам. Кроме того, противодействие шуму обеспечивается средствами восстановления сигналов на каждом логическом вентиле, которые уменьшают или устраняют помехи; такой механизм становится возможным благодаря квантованию цифровых сигналов[16]. До тех пор, пока сигнал остаётся в пределах определённого диапазона значений, он ассоциируется с одной и той же информацией.

Шум является одним из ключевых факторов, влияющих на точность сигнала; в основном это шум, присутствующий в исходном сигнале, и помехи, вносимые при его передаче (см. Отношение сигнал-шум). Фундаментальные физические ограничения — к примеру, т. н. «дробовой» шум в компонентах — устанавливают пределы разрешения аналоговых сигналов. В цифровой электронике дополнительная точность обеспечивается использованием вспомогательных разрядов, характеризующих сигнал; их количество зависит от производительности аналого-цифрового преобразователя (АЦП)[17].

Сложность разработки править

Аналоговые схемы сложнее разрабатывать, нежели сравнимые с ними цифровые; это одна из причин, по которым цифровые системы приобрели большее распространение, нежели аналоговые. Аналоговая схема разрабатывается вручную, и процесс её создания обеспечивает меньше возможностей для автоматизации. Для взаимодействия с окружающей средой в той или иной форме цифровое электронное устройство нуждается в аналоговом интерфейсе[18]. К примеру, у цифрового радиоприёмника имеется аналоговый предусилитель, который является первым звеном приёмной цепи.

Типология схем править

Электронные схемы и их составляющие могут быть разделены на два ключевых типа в зависимости от общих принципов их функционирования: аналоговые (непрерывные) и цифровые (дискретные). Одно и то же устройство может состоять как из схем одного типа, так и из смешения обоих типов в той или иной пропорции.

Аналоговые схемы править

В основном аналоговые электронные приборы и устройства (например, радиоприёмники) конструктивно представляют собой сочетание нескольких разновидностей базовых схем. В аналоговых цепях используется непрерывный диапазон напряжения, в противоположность дискретным уровням, которые применяются в цифровых схемах. К настоящему времени разработано существенное количество разнообразных аналоговых схем — в особенности их число велико в силу того, что под «схемой» можно понимать многое: от единственного компонента до целой системы, состоящей из тысяч элементов. Аналоговые схемы ещё называют иногда линейными (хотя в некоторых их видах — к примеру, преобразователях или модуляторах, — используются и многие нелинейные эффекты). В качестве характерных примеров аналоговых схем можно назвать усилители на электронных лампах и транзисторах, операционные усилители и осцилляторы.

В настоящее время сложно найти такую электронную схему, которая была бы полностью аналоговой. Сейчас в аналоговых цепях используются цифровые или даже микропроцессорные технологии, позволяющие увеличить их производительность. Такая схема обычно называется не аналоговой или цифровой, а смешанной. В некоторых случаях провести чёткое разграничение между непрерывными и дискретными схемами сложно — в силу того, что как те, так и другие включают в свой состав элементы и линейного, и нелинейного характера. Примером может послужить, допустим, компаратор: получая на входе непрерывный диапазон напряжения, он в то же время выдает на выходе лишь один из двух возможных уровней сигнала, подобно цифровой схеме. Похожим образом перегруженный транзисторный усилитель может приобрести свойства контролируемого переключателя, также имеющего два уровня выходного сигнала.

Цифровые схемы править

К цифровым относятся схемы, основанные на двух или более дискретных уровнях напряжения[19]. Они представляют собой наиболее типичную физическую реализацию булевой алгебры и составляют элементную основу всех цифровых компьютеров. Термины «цифровая схема», «цифровая система» и «логическая схема» часто при этом рассматриваются как тождественные. Для цифровых схем характерна, как правило, двоичная система с двумя уровнями напряжения, которые соответствуют логическому нулю и логической единице соответственно. Часто первый соотносится с низким напряжением, а вторая — с высоким, хотя встречаются и обратные варианты. Изучались также и троичные логические схемы (то есть с тремя возможными состояниями), была разработана ЭВМ Сетунь на их основе. Помимо вычислительных машин, цифровые схемы составляют основу электронных часов и программируемых логических контроллеров (используемых для управления промышленными процессами); ещё одним примером могут служить цифровые сигнальные процессоры.

К числу базовых конструктивных элементов этого типа относятся:

Устройства с высокой степенью интеграции:

и др.

Надёжность электронных устройств править

Надёжность электронных устройств складывается из надёжности самого устройства и надёжности электроснабжения. Надёжность самого электронного устройства складывается из надёжности элементов, надёжности соединений, надёжности схемы и др. Графически надёжность электронных устройств отображается кривой отказов (зависимость числа отказов от времени эксплуатации). Типовая кривая отказов имеет три участка с разным наклоном. На первом участке число отказов уменьшается, на втором участке число отказов стабилизируется и почти постоянно до третьего участка, на третьем участке число отказов постоянно растёт до полной непригодности эксплуатации устройства.

Измерительная техника править

На протяжении всего развития радиоэлектронных устройств и компонентов, существовала необходимость объективной оценки исправности и параметров как отдельных радиодеталей, так и готовых изделий. Это приводило и приводит к необходимости иметь парк измерительных приборов. Функциональные особенности их весьма разнообразны. При этом, измерительные приборы сами по себе также являются отдельной областью электроники. Точность измерительной техники является важнейшим фактором, от которого напрямую зависит качество разработанной и отлаженной с их помощью радиоаппаратуры. Не менее важно и соблюдение методики измерений (см. Метрология). Наиболее точные приборы используются для специальных применений, и недоступны большинству разработчиков. Приборы начального уровня (мультиметр, блок питания лабораторный) нередко изготавливались энтузиастами самостоятельно.

См. также править

Примечания править

  1. Большая советская энциклопедия.
  2. Электроника и схемотехника. Конспект лекций с использованием компьютерного моделирования в среде "Tina TI". Этапы возникновения и развития электроники и схемотехники. bstudy.net. Научно-техническое издательство «Горячая линия – Телеком» (2017). Дата обращения: 23 августа 2021.
  3. Игорь Захаров. Краткая история электроники: от лампочки к квантовому компьютеру. postnauka.ru. Издательский дом «ПостНаука» (6 ноября 2019). Дата обращения: 23 августа 2021. Архивировано 23 августа 2021 года.
  4. 1 2 Казакова, 2011, с. 77.
  5. Egon E. Loebner. Subhistories of the Light Emitting Diodes. — IEEE Transaction Electron Devices. — 1976. — Vol. ED-23, №7, July.
  6. Асеев А.Л. и др. Памяти Жореса Ивановича Алфёрова // Успехи физических наук. — Российская академия наук, 2019. — Т. 189. — С. 899—900. — doi:10.3367/UFNr.2019.07.038603. Архивировано 13 сентября 2021 года.
  7. Казакова, 2011, с. 74.
  8. Linde, R. Build Your Own Af Valve Amplifiers: Circuits for Hi-Fi and Musical Instruments (англ.). — Elektor International Media, 1995. — 252 p. — ISBN 9780905705392.
  9. Игорь Захаров.
  10. Казакова, 2011, с. 80.
  11. Казакова, 2011, с. 88.
  12. 1947: Invention of the Point-Contact Transistor. Computer History Museum. Дата обращения: 10 августа 2019. Архивировано 30 сентября 2021 года.
  13. Thompson, S. E.; Chau, R. S.; Ghani, T.; Mistry, K.; Tyagi, S.; Bohr, M. T. (2005). "In search of "Forever," continued transistor scaling one new material at a time". IEEE Transactions on Semiconductor Manufacturing. 18 (1): 26—36. doi:10.1109/TSM.2004.841816. ISSN 0894-6507. In the field of electronics, the planar Si metal–oxide–semiconductor field-effect transistor (MOSFET) is perhaps the most important invention.
  14. Raymer, Michael G. The Silicon Web: Physics for the Internet Age. — CRC Press, 2009. — P. 365. — ISBN 978-1-4398-0312-7. Архивная копия от 17 января 2023 на Wayback Machine
  15. Wong, Kit Po. Electrical Engineering – Volume II. — EOLSS Publications, 2009. — P. 7. — ISBN 978-1-905839-78-0.
  16. Chen, Wai-Kai. The electrical engineering handbook. — Academic Press, 2005. — С. 101. — ISBN 0-12-170960-4.. — «Noise from an analog (or small-signal) perspective…».
  17. Scherz, Paul. Practical electronics for inventors. — McGraw-Hill Education, 2006. — С. 730. — ISBN 0-07-145281-8.. — «In order for analog devices… to communicate with digital circuits…».
  18. Williams, Jim. Analog circuit design. — Newnes, 1991. — С. 238. — ISBN 0-7506-9640-0.. — «Even within companies producing both analog and digital products…».
  19. Уилкинсон Б. Основы проектирования цифровых схем. — Киев: Издательский дом Вильямс,, 2014. — 320 с.

Литература править

  • Казакова И. А. История вычислительной техники. — Пенза: Издательство ПГУ, 2011. — 232 с.
  • Электроника / А. И. Шокин // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  • Малютин А. Е., Филиппов И. В. История электроники. — Москва: Электронный учебник — РГРТА, 2006.
  • Титце У., Шенк К. Полупроводниковая схемотехника. Пер. с нем. — Москва: Мир, 1982. — 512 с.
  • Титце У., Шенк К. Полупроводниковая схемотехника. 12-е изд. В 2-х томах. Учебник-справочник-энциклопедия. Пер. с нем. — Москва: ДМК Пресс, 2008.
  • Гейтс Э. Д. Введение в электронику. — Ростов-на-Дону: Феникс, 1998. — 396 с. — ISBN 5-222-00417-1.
  • Горбачёв Г. Н. Чаплыгин Е. Е. Промышленная электроника / Под ред. проф. В. А. Лабунцова. — Москва: Энергоатомиздат, 1988. — 320 с. — ISBN 5-283-00517-8.
  • Грабовски Б. Справочник по электронике. 2-е изд., испр. — Москва: ДМК Пресс, 2009. — 416 с. — ISBN 978-5-94074-472-6.
  • Жеребцов И. П. Основы электроники. 5-е изд. — Л.: Энергоатомиздат, 1989. — 352 с. — ISBN 5-283-04448-3.