Открыть главное меню

Рентге́ний (лат. Roentgenium, обозначение Rg; ранее унуну́ний, лат. Unununium, обозначение Uuu или эка-золото) — искусственно синтезированный химический элемент побочной подгруппы первой группы, седьмого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 111. Простое вещество рентгений — переходный металл. Наиболее долгоживущий (период полураспада 2,1 минуты) известный изотоп имеет массовое число 282.

Рентгений
← Дармштадтий | Коперниций →
ВодородГелийЛитийБериллийБорУглеродАзотКислородФторНеонНатрийМагнийАлюминийКремнийФосфорСераХлорАргонКалийКальцийСкандийТитанВанадийХромМарганецЖелезоКобальтНикельМедьЦинкГаллийГерманийМышьякСеленБромКриптонРубидийСтронцийИттрийЦирконийНиобийМолибденТехнецийРутенийРодийПалладийСереброКадмийИндийОловоСурьмаТеллурИодКсенонЦезийБарийЛантанЦерийПразеодимНеодимПрометийСамарийЕвропийГадолинийТербийДиспрозийГольмийЭрбийТулийИттербийЛютецийГафнийТанталВольфрамРенийОсмийИридийПлатинаЗолотоРтутьТаллийСвинецВисмутПолонийАстатРадонФранцийРадийАктинийТорийПротактинийУранНептунийПлутонийАмерицийКюрийБерклийКалифорнийЭйнштейнийФермийМенделевийНобелийЛоуренсийРезерфордийДубнийСиборгийБорийХассийМейтнерийДармштадтийРентгенийКоперницийНихонийФлеровийМосковийЛиверморийТеннессинОганесонПериодическая система элементов
111Rg
Unknown.svg
Electron shell 111 Roentgenium.svg
Свойства атома
Название, символ, номер Рентге́ний / Roentgenium (Rg), 111
Атомная масса
(молярная масса)
[281] (массовое число наиболее устойчивого изотопа)[1]
Электронная конфигурация [Rn] 5f14 6d10 7s1
Номер CAS 54386-24-2
111
Рентгений
(281)
5f146d107s1

СвойстваПравить

 
Roentgenium

Предполагается, что рентгений — переходный металл, аналог золота, и структура его электронной оболочки передаётся формулой [Rn]5f146d107s1. Рентгений относится к группе благородных металлов, и предполагается, что он является химически малоактивным металлом.

Так как активность благородных металлов снижается с ростом порядкового номера, то предполагается, что рентгений ещё менее активен, чем золото, и таким образом, является самым химически инертным металлом. Наиболее вероятная степень окисления рентгения +3, подобно золоту (к примеру, в трифториде RgF3).

Цвет рентгения неизвестен, однако расчёты показывают, что для рентгения, как и для серебра, устойчивым будет основное состояние, и не будет наблюдаться перескока электронов. Поэтому металл будет иметь такой же цвет, как серебро, если его получить в макроскопическом количестве.

Плотность рентгения может быть чрезвычайно высокой — он может быть существенно тяжелее, чем осмий.

ИсторияПравить

Элемент 111 был впервые синтезирован 8 декабря 1994 года в немецком городе Дармштадте[2]. Авторами первой публикации, которая вскоре появилась в немецком журнале Zeitschrift für Physik, были руководитель группы С. Хофманн[en] (Институт тяжёлых ионов), В. Нинов, Ф. П. Хессбергер, П. Армбрустер, Х. Фольгер, Г. Мюнценберг, Х. Шётт, А. Г. Попеко, А. В. Еремин, А. Н. Андреев, С. Саро, Р. Яник и М. Лейно. Помимо немецких физиков, в международную группу входили трое учёных из российского Объединённого института ядерных исследований, болгарин (В. Нинов), два словака и один представитель Финляндии.

Первооткрыватели предложили назвать элемент рентгением в честь знаменитого немецкого физика, лауреата Нобелевской премии, открывшего названные его именем лучи, Вильгельма Конрада Рентгена[3]. Символ элемента — Rg.

Первый синтез был проведён по реакции

 

и привёл к образованию трёх ядер изотопа рентгений-272, период полураспада которого был оценён всего в 1,5 мс. Позднее открытие было подтверждено как в Дармштадте[4], так и в других исследовательских центрах; в других ядерных реакциях были получены изотопы 279Rg (период полураспада 170 мс) и 280Rg (3,6 с)[5]. 281Rg, продукт распада 293Uus, распадается путём спонтанного деления (90 %) или испускания α-частицы (10 %); все остальные изотопы рентгения распадаются с испусканием α-частицы.

Эта реакция была ранее проведена в 1986 году в Объединённом институте ядерных исследований в Дубне, но тогда не было обнаружено атомов с 272Rg[6]. В 2001 году Совместная рабочая группа IUPAC/IUPAP пришла к выводу, что в то время не было достаточных доказательств для обнаружения[7]. Команда Института тяжёлых ионов повторила свой эксперимент в 2002 году и обнаружила ещё три атома[8][9]. В своем отчёте за 2003 год JWP решила, что команда Института тяжёлых ионов должна быть признана как обнаружившая этот химический элемент[10].

IUPAC официально признал открытие 111-го элемента в 2003 году[11], а в 2004 году присвоил ему название рентгений[12].

Известные изотопыПравить

Основная статья: Изотопы рентгения
Изотоп Масса Период полураспада[13] Тип распада
272Rg 272 3,8+1,4
−0,8
мс
α-распад в 268Mt
274Rg 274 6,4+30,7
−2,9
мс
α-распад в 270Mt
278Rg 278 4,2+7,5
−1,7
мс[5]
α-распад в 274Mt
279Rg 279 0,17+0,81
−0,08
с
α-распад в 275Mt
280Rg 280 3,6+4,3
−1,3
с
α-распад в 276Mt
281Rg 281 26 с спонтанное деление; α-распад в 277Mt
282Rg 282 2.1 мин[14]

ПримечанияПравить

  1. Meija J. et al. Atomic weights of the elements 2013 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2016. — Vol. 88, no. 3. — P. 265–291. — DOI:10.1515/pac-2015-0305.
  2. S. Hofmann et al. The new element 111 (англ.) // Zeitschrift für Physik A. — 1995. — Vol. 350, no. 4. — P. 281—282.
  3. roentgenium atom.
  4. S. Hofmann et al. New results on elements 111 and 112 (англ.) // The European Physical Journal A. — 2002. — Vol. 14, no. 2. — P. 147—157.
  5. 1 2 Yu. Ts. Oganessian. Heaviest nuclei from 48Ca-induced reactions (англ.) // Journal of Physics G. — 2007. — Vol. 34, no. 4. — P. R165—R242.
  6. Barber, R. C.; Greenwood, N. N.; Hrynkiewicz, A. Z.; Jeannin, Y. P.; Lefort, M.; Sakai, M.; Ulehla, I.; Wapstra, A. P.; Wilkinson, D. H. Discovery of the transfermium elements. Part II: Introduction to discovery profiles. Part III: Discovery profiles of the transfermium elements (англ.) // Pure and Applied Chemistry : journal. — 1993. — Vol. 65, no. 8. — P. 1757. — DOI:10.1351/pac199365081757. (Note: for Part I see Pure Appl. Chem., Vol. 63, No. 6, pp. 879—886, 1991)
  7. Karol; Nakahara, H.; Petley, B. W.; Vogt, E. On the discovery of the elements 110–112 (неопр.) // Pure Appl. Chem.. — 2001. — Т. 73, № 6. — С. 959—967. — DOI:10.1351/pac200173060959.
  8. Hofmann, S.; Heßberger, F. P.; Ackermann, D.; Münzenberg, G.; Antalic, S.; Cagarda, P.; Kindler, B.; Kojouharova, J.; Leino, M.; Lommel, B.; Mann, R.; Popeko, A. G.; Reshitko, S.; Śaro, S.; Uusitalo, J.; Yeremin, A. V. New results on elements 111 and 112 (англ.) // European Physical Journal A (англ.) : journal. — 2002. — Vol. 14, no. 2. — P. 147—157. — DOI:10.1140/epja/i2001-10119-x.
  9. Hofmann. New results on element 111 and 112, GSI report 2000, С. 1–2. Дата обращения 21 апреля 2018.
  10. Karol, P. J.; Nakahara, H.; Petley, B. W.; Vogt, E. On the claims for discovery of elements 110, 111, 112, 114, 116, and 118 (англ.) // Pure Appl. Chem. : journal. — 2003. — Vol. 75, no. 10. — P. 1601—1611. — DOI:10.1351/pac200375101601.
  11. P. J. Karol et al. On the Claims for Discovery of Elements 110, 111, 112, 114, 116, and 118 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2003. — Vol. 75, no. 10. — P. 1601—1611.
  12. J. Corish and G.M. Rosenblatt. Name and symbol of the element with atomic number 111 (IUPAC Recommendations 2004) (англ.) // Pure and Applied Chemistry. — 2004. — Vol. 76, no. 12. — P. 2101—2103.
  13. Nudat 2.3
  14. Khuyagbaatar, J.; Yakushev, A.; Düllmann, Ch. E. et al. 48Ca+249Bk Fusion Reaction Leading to Element Z=117: Long-Lived α-Decaying 270Db and Discovery of 266Lr (англ.) // Physical Review Letters : journal. — 2014. — Vol. 112, no. 17. — P. 172501. — DOI:10.1103/PhysRevLett.112.172501. — Bibcode2014PhRvL.112q2501K. — PMID 24836239.

СсылкиПравить