Предположительно, эта страница или раздел нарушает авторские права. |
H | He | ||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||
Cs | Ba | La | * | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |
Fr | Ra | Ac | ** | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |
* | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | |||||
** | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
Благоро́дные мета́ллы (драгоце́нные мета́ллы) — группа металлов, которую составляют золото, серебро, платина, а также остальные 5 металлов платиновой группы — рутений, родий, палладий, осмий и иридий, получившие такое название по причине высокой химической устойчивости и красивому внешнему виду изготовленных из них изделий[1][2]. Для благородных металлов характерны высокие значения плотности, температуры плавления, давления паров (над расплавом), электропроводности и теплопроводности, оптическая отражательная способность и каталитические свойства[3].
История
правитьНазвание «благородные» было дано группе металлов, обладающих высокой химической стойкостью (практически не окисляются на воздухе), изделия из которых отличаются красивым внешним видом. Для золота, серебра и чистой платины характерна высокая пластичность, а всем металлам платиновой группы — тугоплавкость[2].
Древнейшее время
правитьСамородное золото и серебро известны на протяжении нескольких тысячелетий. Свидетельством этому являются изделия, обнаруженные в древних захоронениях, а также сохранившиеся до настоящего времени простейшие горные выработки. В древности добычу благородных металлов вели в Верхнем Египте, Испании, Нубии, Колхиде (Кавказ). Также имеются данные о добыче этих металлов в Центральной и Южной Америке, в Азии (Индия, Китай, Алтай, Казахстан). На территориях современной России золотодобычу начали вести уже во 2—3-м тысячелетии до н. э. Для улавливания крупинок золота песок из россыпей промывали на шкурах животных с подстриженной шерстью. Кроме этого использовались примитивные лотки, желоба и ковши. Из руд благородные металлы извлекали нагреванием породы до растрескивания, после чего проводили дробление глыб в каменных ступах, истирание жерновами и промывку. Разделение кусков руды по крупности проводили ситовым методом. В Древнем Египте использовался подход к разделению золота и серебра из их сплавов под действием кислот, выделение золота и серебра из сплава со свинцом проводили купелированием, был известен метод извлечения золота путём амальгамирования ртутью. Купелирование проводили в глиняных тиглях, в которые добавляли свинец[4] и селитру. В Древней Греции использовали сбор частиц золота с помощью жировой поверхности[2].
На территории Европы в XI—VI веках до н. э. серебро добывали в Испании в долинах рек Дуэро, Гуадьяро, Тахо и Миньо. В VI—IV веках до н. э. стали проводиться разработки месторождений золота в Западных Карпатах и Трансильвании[2].
Добыча в Средние века
правитьВ Средние века (вплоть до XVIII века) объектом добычи выступало преимущественно серебро, поскольку исчерпание доступных месторождений золота привело к снижению темпов её добычи. С XVI века испанские колонизаторы начали разрабатывать месторождения благородных металлов в Южной Америке: с 1532 года — в Чили и Перу, с 1537 года — на территории Новой Гранады (современная Колумбия). В 1545 году в Боливии началась разработка месторождения на «серебряной горе» Потоси. В 1577 году золотоносные россыпи были обнаружены в Бразилии. К середине XVI века добыча золота и серебра в Южной Америке в 5 раз превышала добычу этих металлов в Европе до открытия Нового Света[2].
Открытие платины
правитьВ первой половине XVI века испанцы, занимавшиеся колонизацией Новой Гранады, обратили внимание, что попутно с золотом в россыпях встречается исключительно тугоплавкий белый металл. Из-за внешнего сходства с серебром (исп. plata) ему дали уменьшительное название «платина» (исп. platina), что буквально означает «серебришко». Платина получила известность ещё в древности — платиновые самородки находили совместно с золотом, а сам металл получил название «белое золото» в Древнем Египте, Абиссинии и Испании, «лягушачье золото» — на острове Борнео. Первое описание платины в научных трудах было сделано Уильямом Уотсоном в 1741 году после начала её добычи в промышленных масштабах в Колумбии[2]. Вследствие того, что платину часто использовали для махинаций (подмена золота в монетах и ювелирных изделиях), в 1735 году в Колумбии королевским указом предписывалось монетным дворам в Санта-Фе и Папаяне выбрасывать её при свидетелях в реки: Боготу и Кауку [5][6].
Открытие палладия, родия, иридия, осмия и рутения
правитьОпыты по очистке платины привели к внимательному изучению состава сырой платины, что способствовало открытию сопутствующих ей металлов платинового ряда. Палладий и родий был открыт в 1803 году английским учёным Уильямом Волластоном, иридий и осмий — в 1804 году английским учёным С. Теннантом. В 1808 году польский учёный Анджей Снядецкий при исследовании привезённой из Южной Америки платиновой руды, извлёк из неё новый химический элемент, который назвал вестием. В 1844 году этот элемент был подробно изучен профессором Казанского университета Карлом Клаусом, который дал ему название рутений в честь России[2][7].
Добыча в России
правитьПервым промышленно добываемым в России благородным металлом было серебро, добыча которого началась в XVII веке в Забайкалье и проводилась подземным способом. В 1767 году изобретатель-металлург Ф. Бакунин впервые выполнил плавку серебряных руд с применением шлаков в качестве флюсов[8].
Летопись Далматовского монастыря содержит первое письменное упоминание о добыче золота из россыпей на Урале, относящееся к 1669 году. В 1732 году золото было найдено в Олонецком крае близ деревни Войцы (сейчас в Новгородской области)[9], а в 1737 году в Карелии было открыто одно из первых месторождений золота в России[2], и в 1745 году начата его разработка. Также 1745 год принято считать началом золотодобычи на Урале после обнаружения золота Е. Марковым в долине реки Берёзовка (приток Пышмы), где далее в середине XVIII века было разведано Берёзовское золоторудное месторождение[9][10].
В 1819 году в руде Восточно-Исетских золотоносных месторождений, расположенных на восточном склоне Уральских гор, в качестве спутника золота был обнаружен «новый сибирский металл»[11], а в 1923 году было установлено, что этим металлом является осмий-иридиевым сплавом, содержащим некоторое количество платины[12][13]. В ходе дальнейших геолого-исследовательских работ горным офицером К. П. Голляховским в 1824 году была найдена богатая россыпь платины с золотом у реки Мельничной[14], где был заложен первый в России и Европе платиновый прииск[2]. В 1826 году Голляховским были разведаны и подробно описаны уральские платиновые россыпи вдоль реки Иса[15], получившие мировую известность и сформированные далее в Исовский платиноносный район. В 1828 году в публикациях российского учёного В. В. Любарского была подробно охарактеризована природная платина из россыпей, обнаруженных у Главного Уральского хребта[15]. До 1915 года на долю России приходилось 93—95 % всего мирового производства сырой платины, которую добывали в основном из россыпей, остальное количество производили методом электролитического рафинирования золота и меди (итоговую очистку — аффинаж — проводили, в основном, за границей: во Франции, Германии, Англии[16]); 4—6 % приходилось на долю Колумбии, около 1 % — на остальные страны[17][2][18].
Для извлечения благородных металлов из россыпных месторождений в XIX веке были созданы различные конструкции машин, например, вашгерд и бутара (барабанный грохот). Начиная с первой половины XIX века широкое распространение на уральских приисках получила буторная разработка, состоящая в размыве пород россыпей потоком свободной воды. В 30-х годах XIX века воду для размыва стали подавать под напором. Дальнейшие усовершенствования этого метода привели к созданию водобоев, ставших прототипами гидромониторов. Впервые гидравлическая разработка россыпи, расположенной около озера Байкал, была проведена в 1867 году А. П. Чаусовым; позднее в 1888 году Е. А. Черкасов применил этот способ на месторождении в долине реки Чебалсук на юге Хакассии. На обводнённых золотоплатиновых россыпях в начале XIX века также использовали землечерпалки[2], а с начала XX века — драги[19]. Во второй половине XIX века разработку глубоких россыпей в России стали вести подземным способом, а в конце XIX века распространение получили скреперы и экскаваторы[2].
Развитие технологий извлечения и переработки
правитьТехнология получения платины
правитьВ конце XVII — начале XIX века многие европейские химики и техники: де-Лилль, Волластон, Гитон де-Морво, Жанетти освоили технологию очистки сырой платины и изготовления из неё проволоки, пластин, а также чашек и других изделий. Парижский золотых дел мастер Жанетти достиг в этом деле особого совершенства. Основная трудность обработки платины заключалась в её высокой температуре плавления (1773,5 °C), что препятствовало ковке. Первая технология переработки платины была основана на сплавлении её с мышьяком с образованием арсенида платины, из которого мышьяк далее выжигали в ходе длительного прокаливания на воздухе с образованием ковкой платины. Другая технология была предложена Волластоном и была основана на растворении сырой (шлиховой) платины в царской водке, с последующим осаждение под действием хлористого аммония гесахлорплатината аммония, который затем прокаливали с образованием губчатой платины. Её далее прессовали в форме, прокаливали и повторно обрабатывали под давлением, в результате чего получали ковкий металл. Этот метод стал в дальнейшем основой порошковой металлургии. В начале XIX века платина уже нашла себе значительное применение в качестве кислотоупорного и жаростойкого материала, а также применялась для изготовления ювелирных сплавов. В 1827 году В. В. Любарский и П. Г. Соболевский самостоятельно разработали способ очистки и получения ковкой платины, подобный методу Волластона [13][20], что стало первым в мире примером очистки платины в промышленном масштабе — в течение года им было очищено около 800 кг платины[2]. Выплавка платины впервые была выполнена в 1859 году французскими учёными А. Дебре и А. Э. Сент-Клер Девиль в печи под действием кислородно-водородного пламени[13].
Технология производства золота
правитьВпервые очистка золота методом электролиза была проведена в 1863 году, а с 80-х годах XIX века начал применяться в производственных масштабах.
Распространение в природе и добыча
правитьМесторождения золота и платины можно разделить на россыпи и коренные (рудные) месторождения. По этой причине технология извлечения этих металлов состоит в обогащении россыпей и переработке руд. Наряду с рудами самих благородных металлов значительную роль в их добыче играют свинцово-цинковые, а также медные руды, которые выступают основным источником для получения серебра и значительным — при извлечении золота. Медно-никелевые платиносодержащие руды используют при получении платины[21].
Цианистый процесс
правитьВ работах шведского химика К. В. Шееле (1772 год) содержалось указание на переход золота в раствор при действии цианистых соединений. В 1843 году российский учёный П. Р. Багратион опубликовал труд о растворении золота и серебра в водных растворах цианидов в присутствии кислорода и окислителей, заложив основы гидрометаллургии золота.
Кроме амальгамации, в 1886 году впервые в России было осуществлено извлечение золота из руд хлорированием (Кочкарьский рудник на Урале). В 1896 году на том же руднике пущен первый в России завод по извлечению золота цианированием (первый такой завод построен в Йоханнесбурге (Южная Африка) в 1890 году). Вскоре цианистый процесс применили для извлечения серебра из руд.
В 1887—1888 годах в Англии Дж. С. Мак-Артур и братья Р. и У. Форрест получили патенты на способы извлечения золота из руд обработкой их разбавленными щелочными растворами цианидов и осаждения золота из этих растворов цинковой стружкой. В 1893 году было проведено осаждение золота электролизом, в 1894 году — цинковой пылью. В СССР золото добывалось в основном из россыпей; за рубежом около 90 % золота — из рудных месторождений.
По эффективности добычи благородных металлов из россыпей лучшим является дражный способ, менее экономичны скреперно-бульдозерный и гидравлический. Подземная разработка россыпей почти в 1,5 раза дороже дражного способа; в СССР её применяют на глубоких россыпях в долинах рек Лены и Колымы. Серебро добывают главным образом из рудных месторождений. Оно встречается в основном в свинцово-цинковых месторождениях, дающих ежегодно около 50 % всего добываемого серебра; из медных руд получают 15 %, из золотых 10 % серебра; около 25 % добычи серебра приходится на серебряные жильные месторождения. Значительную часть платиновых металлов извлекают из медно-никелевых руд. Платину и металлы её группы выплавляют вместе с медью и никелем, и при очистке последних электролизом они остаются в шламе.
Гидрометаллургия
правитьДля извлечения благородных металлов широко пользуются методами гидрометаллургии, часто комбинируемыми с обогащением. Гравитационное обогащение благородных металлов позволяет выделять крупные частицы металла. Его дополняют цианирование и амальгамация, первое теоретическое обоснование которой дано советским учёным И. Н. Плаксиным в 1927 году. Для цианирования наиболее благоприятно хлористое серебро; сульфидные серебряные руды часто цианируют после предварительного хлорирующего обжига. Золото и серебро из цианистых растворов осаждают обычно металлическим цинком, реже углём и ионообменными смолами. Также золото и серебро извлекают из руд путём селективной флотации. Около 80 % серебра получают главным образом пирометаллургией, остальное количество — амальгамацией и цианированием.
Аффинаж
правитьБлагородные металлы высокой чистоты получают аффинажем. Потери золота при этом (включая плавку) не превышают 0,06 %, содержание золота в аффинированном металле обычно не ниже 999,9 пробы; потери платиновых металлов не выше 0,1 %. Ведутся работы по интенсификации цианистого процесса (цианирование под давлением или при продувке чистого кислорода), изыскиваются нетоксичные растворители для извлечения благородных металлов, разрабатываются комбинированные методы (например, флотационно-гидрометаллургический), применяются органические реагенты. Осаждение благородных металлов из цианистых растворов и пульп эффективно осуществляется с помощью ионообменных смол. Успешно извлекаются благородные металлы из месторождений при помощи бактерий путём бактериальное выщелачивания.
Применение
правитьВалютные металлы
правитьСохраняет функции валютных металлов главным образом золото (см. Деньги). Серебро с древности активно использовалось в качестве денег, но затем, после чрезмерного насыщения рынка в первой половине XX века, оно фактически утратило эту функцию.
В настоящее время серебро хранится в составе валютных резервов некоторых Центральных банков, но в довольно малых объёмах.
Драгоценные металлы можно использовать частным лицам и компаниям в качестве накоплений. Ямайская валютная система активно использует фьючерсы на серебро на бирже драгоценных металлов, а также на рынке иностранной валюты для спекуляций ценой металла. При спекуляции фьючерсами объём металла, обеспеченный фьючерсами как производными ценными бумагами, может многократно превышать реально существующий в мире объём запасов металла, поэтому в данной ситуации говорят о «бумажном золоте» или «бумажном серебре».
Применение в технике
правитьВ электротехнической промышленности из благородных металлов изготовляют контакты с большой степенью надёжности (стойкость против коррозии, устойчивость к действию образующейся на контактах кратковременной электрической дуги). Например, небольшая добавка рутения (0,1 %) увеличивает коррозионную стойкость титана, а из сплава с платиной изготавливают чрезвычайно износостойкие электрические контакты. Около 50 % добываемого рутения расходуется при производстве толстоплёночных резисторов.
Сплав «osram» (осмия с вольфрамом) использовался для изготовления нитей ламп накаливания. Сплав осмия с алюминием имеет необычно высокую пластичность и может быть вытянут без разрыва в 2 раза.
В технике слабых токов при малых напряжениях в цепях используются контакты из сплавов золота с серебром, золота с платиной, золота с серебром и платиной. Для слаботочной и средненагруженной аппаратуры связи широко применяют сплавы палладия с серебром (от 60 до 5 % палладия). Представляют интерес металлокерамические контакты, изготовляемые на основе серебра как токопроводящего компонента. Магнитные сплавы благородных металлов с высокой коэрцитивной силой используют при изготовлении малогабаритных электроприборов. Сопротивления (потенциометры) для автоматических приборов и тензометров делают из сплавов благородных металлов (главным образом, палладия с серебром, реже с другими металлами). Эти сплавы характеризуются малым температурным коэффициентом электрического сопротивления, малой термоэлектродвижущей силой в паре с медью, высоким сопротивлением износу, высокой температурой плавления и высокой стойкостью к окислению.
Применение в химическом машиностроении и лабораторной технике
правитьТетраоксид осмия применяется в просвечивающей электронной микроскопии (ПЭМ) для контрастирования биологических объектов.
Химически стойкие металлы идут на изготовление деталей, работающих в агрессивных средах — технологические аппараты, химические реакторы, электрические нагреватели, высокотемпературные печи, аппаратуру для производства оптического стекла и стекловолокна, термопары, эталоны сопротивления и другие. В данном качестве благородные металлы спользуются как в чистом виде, так и в би- и полиметаллических сплавах. Химические реакторы и их части делают целиком из благородных металлов или только покрывают фольгой из благородных металлов. Покрытые платиной аппараты применяют при изготовлении чистых химических препаратов и в пищевой промышленности. Когда химической стойкости и тугоплавкости платины или палладия недостаточно, их заменяют сплавами платины с металлами, повышающими эти свойства: иридием (5—25 %), родием (3—10 %) и рутением (2—10 %). Примером использования благородных металлов в этих областях техники является изготовление котлов и чаш для плавки щелочей или работы с соляной, уксусной и бензойной кислотами; автоклавов, дистилляторов, колб, мешалок и прочих устройств.
Применение в медицине
правитьВ медицине благородные металлы применяют для изготовления хирургических инструментов, деталей медицинских приборов, протезов, а также различных препаратов, главным образом на основе серебра.
Сплав платины (90 %) и осмия (10 %) применяется в хирургических имплантатах, таких, как электрокардиостимуляторы, и при замещении клапанов лёгочного ствола[22].
Сплавы платины с иридием, палладием и золотом почти незаменимы при изготовлении игл для шприцев. Из медицинских препаратов, содержащих благородные металлы, наиболее распространены ляпис, протаргол, цисплатин и другие. Благородные металлы применяют при лучевой терапии (иглы из радиоактивного золота для разрушения злокачественных опухолей), а также в препаратах, повышающих защитные свойства организма.
В электронике
правитьВ электронной технике из золота, легированного германием, индием, галлием, кремнием, оловом, селеном, делают контакты в полупроводниковых диодах и транзисторах. Золото и серебро напыляют на поверхность волноводов для уменьшения потерь (см. скин-эффект).
В фото- и кинопромышленности
правитьДо начала эры цифровой фотографии соли серебра были главным сырьём при изготовлении светочувствительных материалов (хлориды, бромиды или иодиды). На заре фотографии использовали соли золота и платины, в частности при вирировании изображения.
В ювелирной промышленности
правитьВ ювелирном деле и декоративно-прикладном искусстве применяют сплавы благородных металлов (см. Цветное золото).
Защитные покрытия
правитьВ качестве покрытий благородные металлы предохраняют основные от коррозии или придают поверхности этих металлов свойства, присущие благородным металлам (например, отражательная способность, цвет, блеск и так далее). Золото эффективно отражает тепло и свет от поверхности ракет и космических кораблей. Для отражения инфракрасного излучения в космосе достаточно тончайшего слоя золота в 17 нм. Для защиты от внешних воздействий, а также для улучшения наблюдения за спутниками на их внешнюю оболочку наносят золотое покрытие. Золотом покрывают некоторые внутренние детали спутников, а также помещения для аппаратуры с целью предохранения от перегрева и коррозии. Благородные металлы используют также в производстве зеркал (серебрение стекла растворами или покрытие серебром распылением в вакууме). Тончайшую плёнку благородных металлов наносят изнутри и снаружи на кожухи авиационных двигателей самолётов высотной авиации. Благородные металлы покрывают отражатели в аппаратах для сушки инфракрасными лучами, электрические контакты и детали проводников, а также радиоаппаратуру и оборудование для рентгено- и радиотерапии. В качестве антикоррозийного покрытия благородные металлы используют при производстве труб, вентилей и ёмкостей специального назначения. Разработан широкий ассортимент золотосодержащих пигментов для покрытия металлов, керамики, дерева.
Припои и антифрикционные сплавы
правитьПрипои с серебром значительно превосходят по прочности медно-цинковые, свинцовые и оловянные, их применяют для пайки радиатор, карбюраторов, фильтров и так далее.
Износостойкие узлы
правитьСплавы иридия с осмием, а также золота с платиной и палладием используют для изготовления компасных игл, напаек «вечных» перьев. Высокая твёрдость и исключительная тугоплавкость позволяет использовать осмий в качестве покрытия в узлах трения.
Химическая промышленность: катализаторы
правитьВысокие каталитические свойства некоторых благородных металлов позволяют применять их в качестве катализаторов: платину — при производстве серной и азотной кислот; серебро — при изготовлении формалина. Золото заменяет более дорогую платину в качестве катализатора в химической и нефтеперерабатывающей промышленности. Родий и иридий катализируют реакцию в процессе производства уксусной кислоты[23]. Осмий применяется как катализатор для синтеза аммиака, гидрирования органических соединений, в катализаторах метанольных топливных элементов. Платина, палладий и родий применяются в катализаторах окисления выхлопных газов автомобилей (см. Каталитический конвертер).
Благородные металлы (серебро и рутений) используют также для очистки воды.
Мировое производство и цены
правитьДобыча золота в мире в целом растёт. В 2019 году было добыто 3533,7 тонн золота. На первом месте КНР: в 2019 г. добыто 383,2 тонн. На втором месте — Российская Федерация с 329,5 тоннами добычи. На третьем — Австралия: 325,1 тонн. Цена тройской унции золота на спотовом рынке по состоянию на 14 декабря 2020 года — $1829.
Палладий в 2020 году стал самым дорогим промышленным металлом с огромным отрывом в стоимости от других металлов — 19 февраля цена на LSE достигала рекордного уровня в $2841 за унцию. Только с начала 2020 года он подорожал на 45 %, в 2019 году — на 54 %, за последние три года — вчетверо. Это стало возможным благодаря резкому росту спроса на металл как катализатор в бензиновых двигателях. Но, вопреки рыночным законам, структурный дефицит палладия в ближайшие годы не исчезнет: новых крупных проектов по его добыче в мире почти нет, а автопроизводители продолжают наращивать закупки[24]. Цена палладия в декабре 2020 г. — $2376 .
Мировые запасы рутения оцениваются в 5000 тонн[25]. Цена тройской унции рутения 10 декабря 2020 года — $270.
Осмий имеет самый большой удельный вес из всех благородных металлов: 22,61 г/см3[26]. Самые большие запасы осмия в мире, составляющие 127 000 тонн, находятся в Турции. Также существенные запасы осмия расположены в Болгарии[27]. Цена осмия на мировом рынке весь 2020 год была стабильной — $400 за тройскую унцию.
Крупнейший мировой производитель платиноидов в 2005 году: РАО «Норильский никель».
Таблица составлена по данным журнала «Эксперт» (на 2005 год)[28].
Металл | Первичное производство (тонн) | Средняя цена ($/кг) | Объём (млн $) |
---|---|---|---|
Серебро | 20 300 | 236 | 4792 |
Золото | 2450 | 14 369 | 35 205 |
Палладий | 214 | 6839 | 1463 |
Платина | 206 | 30 290 | 6240 |
Рутений | 24 | 2401 | 871 |
Родий | 23 | 66 137 | 1323 |
Иридий | 4 | 5477 | 5 |
Осмий | 1 | 12 903 | 1 |
См. также
правитьПримечания
править- ↑ Химическая энциклопедия, 1988, Т. 1. Благородные металлы, с. 297.
- ↑ 1 2 3 4 5 6 7 8 9 10 11 12 13 БСЭ, 1970, Т. 3. Благородные металлы, с. 407—409.
- ↑ Schlamp, 2018, p. 335.
- ↑ к.х.н. Т.И.Маякова. Пробирный анализ: от древнего мира до наших дней. Обзор // Золотодобыча : журнал. — 2007. — Декабрь (№ 97). Архивировано 21 апреля 2021 года.
- ↑ Звягинцев, 1931, с. 6.
- ↑ Кудряшов Н. Серебришко, которое платина // Наука и жизнь : журнал. — 2000. — Июнь.
- ↑ Звягинцев, 1931, с. 8.
- ↑ Плаксин, 1958, с. 14.
- ↑ 1 2 Плаксин, 1958, с. 12.
- ↑ 265 лет со дня открытия первого российского золота . www.rosnedra.gov.ru. Федеральное агентство по недропользованию. Дата обращения: 20 мая 2024.
- ↑ Фрицман, 1927, с. 26.
- ↑ Фрицман, 1927, с. 28.
- ↑ 1 2 3 Плаксин, 1958, с. 15.
- ↑ Фрицман, 1927, с. 25.
- ↑ 1 2 Фрицман, 1927, с. 66.
- ↑ Звягинцев, 1931, с. 24.
- ↑ Звягинцев, 1931, с. 9.
- ↑ Плаксин, 1958, с. 19.
- ↑ Плаксин, 1958, с. 19.
- ↑ Звягинцев, 1931, с. 6—7.
- ↑ Плаксин, 1958, с. 51.
- ↑ Ошибка в сносках?: Неверный тег
<ref>
; для сносок:0
не указан текст - ↑ УКСУСНАЯ КИСЛОТА: свойства и технология производства . newchemistry.ru. Дата обращения: 15 декабря 2020. Архивировано 19 апреля 2021 года.
- ↑ Катализатор роста // Коммерсантъ. Архивировано 1 ноября 2020 года.
- ↑ Emsley, John. Nature's building blocks : an A-Z guide to the elements. — Oxford: Oxford University Press, 2001. — viii, 538 pages с. — ISBN 0-19-850341-5, 978-0-19-850341-5, 978-0-19-850340-8, 0-19-850340-7, 0-19-286215-4, 978-0-19-286215-0. Архивировано 15 декабря 2020 года.
- ↑ WebElements Periodic Table » Osmium » the essentials . www.webelements.com. Дата обращения: 15 декабря 2020. Архивировано 26 ноября 2020 года.
- ↑ Осмий-187: обзор мирового рынка 2020 г. marketpublishers.ru (15 января 2020). Дата обращения: 15 декабря 2020. Архивировано 18 апреля 2021 года.
- ↑ Мировое производство и цены на благородные металлы в 2005 году . expert.ru. Дата обращения: 13 октября 2016. Архивировано из оригинала 13 октября 2016 года.
Литература
править- Химическая энциклопедия / под ред. И. Л. Кнунянца — М.: Советская энциклопедия, 1988. — Т. 1: Абл-Дар. — 623 с.
- Большая советская энциклопедия : [рус.] : в 30 т. / под ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1970. — Т. 3 : Бари — Браслет. — 640 с.
- Фрицман Э. Исторический очерк платинового дела в России : [рус.] // Известия института по изучению платины. — 1927. — Т. 5. — С. 23—74.
- Металлы и сплавы в электротехнике : [рус.] / под ред. А. С. Займовского. — 3-е изд. — М.—Л. : Госэнергоиздат, 1957. — Т. 1—2.
- Плаксин И. Н. Металлургия благородных металлов : [рус.]. — М. : Металлургиздат, 1958. — 366 с.
- Springer Handbook of Materials Data : [англ.] / Warlimont, H., Martienssen, W. (eds). — Springer, 2018. — 14 : Noble Metals and Noble Metal Alloys / Schlamp, G.. — P. 335—408. — 1140 p. — ISBN 978-3-319-69741-3. — doi:10.1007/978-3-319-69743-7_14.
- Данилевский И. В. Русское золото. История открытия и добычи до середины XIX века : [рус.]. — М. : Государственное научно-техническое издательство литературы по чёрной и цветной металлургии, 1959. — 380 с.
- Бузланов Г. Ф. Производство и применение металлов платиновой группы в промышленности : [рус.]. — М., 1961. — 52 с.
- Вязельщиков В. П., Парицкий З. Н. Справочник по обработке золотосодержащих руд и россыпей : [рус.]. — М. : Недра, 1963. — 650 с.
- Анализ благородных металлов : [рус.] / под ред.Н. К. Пшеницына, О. Е. Звягинцева. — М. : Издательство АН СССР, 1959. — 193 с.
- Пробоотбирание и анализ благородных металлов : [рус.] / под ред. И.Ф. Барышникова. — М. : Металлургия, 1968. — 398 с.
- Йорданов Х. В. Записки по металлургия на редките мета : [болг.]. — София : Техника, 1959. — 452 с.
- Звягинцев О. Е. Советская платина — М., СПб.: Государственное научно-техническое издательство, 1931. — 56 с.