Электролиз

Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита[1].

Схематическое изображение электролитической ячейки для исследования электролиза

Электролиз является одним из лучших способов золочения или покрытия металла медью, золотом.

Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создаётся электродами — проводниками, соединёнными с полюсами источника электрической энергии. Катодом при электролизе называется отрицательный электрод, анодом — положительный[2]. Положительные ионы — катионы (ионы металлов, водородные ионы, ионы аммония и др.) — движутся к катоду, отрицательные ионы — анионы (ионы кислотных остатков и гидроксильной группы) — движутся к аноду[3].

Реакции, происходящие при электролизе на электродах, называются вторичными. Первичными являются реакции диссоциации в электролите. Разделение реакций на первичные и вторичные помогло Майклу Фарадею установить законы электролиза.

С точки зрения химии, электролиз — окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через раствор электролита.

Применение

править
 
Цех электролиза меди завода «Уралэлектромедь».Катоды опущены в ванны с электролитом
 
Аноды
 
Катоды

Электролиз широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, меди, водорода, диоксида марганца[4], пероксида водорода. Большое количество металлов извлекается из руд и подвергается переработке с помощью электролиза (электроэкстракция, электрорафинирование). Также электролиз является основным процессом, благодаря которому функционирует химический источник тока.

Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации).

Применяется для получения многих веществ (металлов, водорода, хлора и др.), при нанесении металлических покрытий (гальваностегия), воспроизведении формы предметов (гальванопластика).

Первый закон Фарадея

править

В 1832 году Фарадей установил, что масса   вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду  , прошедшему через электролит:

 

Если через электролит пропускается в течение времени   постоянный ток с силой тока  , то

 

Коэффициент пропорциональности   называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Вывод закона Фарадея

править
  (1)
  (2)
  (3)
  (4)
 , (5)
где z — валентность атома (иона) вещества,
e — заряд электрона
Подставляя (2)-(5) в (1), получим
 
 ,

где   — постоянная Фарадея.

 
 

Второй закон Фарадея

править

Электрохимические эквиваленты различных веществ пропорциональны их молярным массам и обратно пропорциональны числам, выражающим их химическую валентность.

Химическим эквивалентом иона называется отношение молярной массы   иона к его валентности  . Поэтому электрохимический эквивалент

 ,

где   — постоянная Фарадея.

Второй закон Фарадея записывается в следующем виде:

 ,
где   — молярная масса данного вещества, образовавшегося (однако не обязательно выделившегося — оно могло и вступить в какую-либо реакцию сразу после образования) в результате электролиза, г/моль
  — сила тока, пропущенного через вещество или смесь веществ (раствор, расплав), А
  — время, в течение которого проводился электролиз, с
  — постоянная Фарадея, Кл·моль−1
  — число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного)
Однако это не всегда так; например, при электролизе раствора соли меди(II) может образовываться не только свободная медь, но и ионы меди(I) (при небольшой силе тока).

Изменение электролизом веществ

править

Не все вещества будут электролизироваться при пропускании электрического тока. Существуют некоторые закономерности и правила.

Катионы активных металлов Катионы менее активных металлов Катионы неактивных металлов
Li+, Cs+, Rb+, K+, Ba2+, Sr2+, Ca2+, Na+, Mg2+, Be2+, Al3+ Mn2+, Cr3+, Zn2+, Ga3+, Fe2+, Cd2+, In3+, Tl+, Co2+, Ni2+, Mo4+, Sn2+, Pb2+ Bi3+, Cu2+, Ag+, Hg2+, Pd3+, Pt2+, Au3+
Тяжело разряжаются (только из расплавов), в водном растворе электролизу подвергается вода с выделением водорода В водном растворе восстанавливается металл (при малой концентрации катионов в растворе — металл и водород) Легко разряжаются, и восстанавливается только металл
Анионы кислородсодержащих кислот и фторид-ион Гидроксид-ионы; анионы бескислородных кислот (кроме F)
PO43−, CO32−, SO42−, NO3, NO2, ClO4, F OH, Cl, Br, I, S2−
Тяжело разряжаются (только из расплавов), в водном растворе электролизу подвергается вода с выделением кислорода Легко разряжаются

Примеры

править

Расплавы

править

Активные металлы, менее активные металлы и неактивные металлы в расплавах ведут себя одинаково.

Соль активного металла и бескислородной кислоты Соль активного металла и кислородсодержащей кислоты Гидроксид: активный металл и гидроксид-ион
 

K(-):  

A(+):  

Вывод:  

 

K(-):  

A(+):  

Вывод:  

 

K(-):  

A(+):  

Вывод:  

Растворы

править

Активные металлы

править
Соль активного металла и бескислородной кислоты Соль активного металла и кислородсодержащего кислотного остатка Гидроксид: активный металл и гидроксид-ион
 

K(-):  

A(+):  

Вывод:  

 

K(-):  

A(+):  

Вывод:  

 

K(-):  

A(+):  

Суммарно:  

Вывод:  

Менее активные металлы и неактивные металлы

править
Соль менее активного металла и бескислородной кислоты Соль менее активного металла и кислородсодержащей кислоты Гидроксид
 

K(-):  

A(+):  

Вывод:  

 

K(-):  

A(+):  

Вывод:  

Невозможно: гидроксиды неактивных металлов нерастворимы в воде

Мнемоническое правило

править

Для запоминания катодных и анодных процессов в электрохимии существует следующее мнемоническое правило:

  • У анода анионы окисляются.
  • На катоде катионы восстанавливаются.

В первой строке все слова начинаются с гласной буквы, во второй — с согласной.

Или проще:

  • КАТод — КАТионы (ионы у катода, катодный процесс)
  • АНод — АНионы (ионы у анода, анодный процесс)

Электролиз в газах

править

Электролиз в газах, при наличии ионизатора, заключается в том, что при прохождении через них постоянного электрического тока наблюдается выделение веществ на электродах. Законы Фарадея в газах не действительны, но существуют несколько закономерностей:

  1. при отсутствии ионизатора электролиз проводиться не будет, даже при высоком напряжении;
  2. электролизу подвергаются только бескислородные кислоты в газообразном состоянии и некоторые газы;
  3. уравнения электролиза, как в электролитах, так и в газах, всегда остаются постоянными.

См. также

править

Примечания

править
  1. «Электролиз» — статья в Малой советской энциклопедии; 2 издание; 1937—1947 гг.
  2. Обратное обозначение знака катода и анода встречается в литературе при описании гальванических элементов
  3. Электролиз // Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов. — М. : Большая российская энциклопедия, 2004—2017.
  4. Электросинтез // Химическая энциклопедия.

Ссылки

править