Открыть главное меню

Восьмиугольное число

Восьмиугольное число — разновидность многоугольных фигурных чисел, которая может быть представлена восьмиугольником. Общая формула n-го по порядку восьмиугольного числа: 3n2 — 2n, где .

Первые восьмиугольные числа:

1, 8, 21, 40, 65, 96, 133, 176, 225, 280, 341, 408, 481, 560, 645, 736, 833, 936… последовательность A000567 в OEIS

Восьмиугольные числа могут быть созданы расположением треугольных чисел на четырёх сторонах квадрата. Алгебраически, n-е восьмиугольное число это

n-е восьмиугольное число можно также вычислить, сложив квадрат n с удвоенным (n — 1)-м прямоугольным числом.

Восьмиугольные числа последовательно чередуют чётность.

Восьмиугольные числа иногда упоминаются как звёздные числа[en], хотя этот термин чаще используется для обозначения центрированных двенадцатиугольных чисел.[1]

Тест на восьмиугольность числаПравить

Для восьмиугольного числа   верно, что

 

Произвольное число x можно проверить на восьмиугольность, поместив его в это уравнение. Если n — целое число, то x является n-м восьмиугольным числом. Если n не является целым числом, то x не является восьмиугольным.

См. такжеПравить

ПримечанияПравить

ЛитератураПравить

  • Виленкин Н. Я., Шибасов Л. П. Шибасова 3. Ф. За страницами учебника математики: Арифметика. Алгебра. Геометрия. — М.: Просвещение, 1996. — С. 30. — 320 с. — ISBN 5-09-006575-6.
  • Глейзер Г. И. История математики в школе. — М.: Просвещение, 1964. — 376 с.
  • Деза Е., Деза М. Фигурные числа. — М.: МЦНМО, 2016. — 349 с. — ISBN 978-5-4439-2400-7.

СсылкиПравить