Группа классов идеалов дедекиндова кольца — это, грубо говоря, группа, позволяющая сказать, насколько сильно в данном кольце нарушается свойство факториальности. Эта группа тривиальна тогда и только тогда, когда дедекиндово кольцо является факториальным. Свойства дедекиндова кольца, касающиеся умножения его элементов, тесно связаны с устройством этой группы.

Определение

править

Пусть R — целостное кольцо, определим отношение   на его ненулевых дробных идеалах следующим образом:   тогда и только тогда, когда существуют ненулевые элементы a и b кольца R, такие что  , легко показать, что это задаёт отношение эквивалентности. Классы эквивалентности по этому отношению называются классами идеалов. Умножение классов, определенное как [a]*[b] = [ab] корректно определено, ассоциативно и коммутативно; главные дробные идеалы образуют класс [R], являющийся единицей для этого умножения. Класс [I] имеет обратный к нему класс [J] тогда и только тогда, когда идеал IJ главный. В общем случае такой J может не существовать и классы идеалов будут всего лишь коммутативным моноидом.

Если R к тому же является дедекиндовым кольцом (например, кольцом алгебраических чисел некоторого алгебраического числового поля), то у каждого дробного идеала I существует обратный J, такой что IJ = R = (1). Следовательно, классы дробных идеалов дедекиндова кольца с определенным выше умножением образуют абелеву группу, группу классов идеалов кольца R.

Свойства

править
  • Группа классов идеалов тривиальна тогда и только тогда, когда все идеалы кольца R главные, то есть когда R является областью главных идеалов. При этом дедекиндово кольцо факториально тогда и только тогда, когда оно является областью главных идеалов.
  • Число классов идеалов кольцо R в общем случае может быть бесконечным; более того, любая абелева группа изоморфна группе классов некоторого дедекиндова кольца[1]. Однако если R — кольцо целых числового поля, его число классов конечно.
  • Вычисление группы классов в общем случае является довольно трудным. Это можно сделать вручную для алгебраического числового поля с малым дискриминантом, используя границу Минковского[англ.]. Для полей с большим дискриминантом вычисление вручную становится непрактичным, и его обычно проводят при помощи компьютера.

Примеры

править

Число классов квадратичного поля

править

Если d — число, свободное от квадратов, то   является квадратичным полем. Если d < 0, группа классов тривиальна только для следующих значений:   Что касается случая d > 0, до сегодняшнего дня остаётся открытой проблемой вопрос о том, бесконечно ли число значений, которым соответствует тривиальная группа классов.

Пример нетривиальной группы классов

править

  — кольцо целых числового поля   Это кольцо не является факториальным; действительно, идеал

 

не является главным. Это можно доказать от противного следующим образом. На   можно определить функцию нормы  , причем   и   тогда и только тогда, когда x обратим. Прежде всего,  . Факторкольцо по идеалу   изоморфно  , поэтому  . Если J порожден элементом x, то x делит 2 и 1 + √−5. Следовательно, норма x делит 4 и 6, то есть равна 1 или 2. Она не может быть равна 1, так как J не равен R, и не может быть равна 2, так как   не может иметь остаток 2 по модулю 5. Легко проверить что   — главный идеал, поэтому порядок J в группе классов равен 2. Однако проверка того, что все идеалы принадлежат одному из этих двух классов, требует чуть больших усилий.

Примечания

править

Литература

править
  • Атья М., Макдональд И. Введение в коммутативную алгебру. — М: Мир, 1972
  • Claborn, Luther (1966), "Every abelian group is a class group", Pacific Journal of Mathematics, 18: 219—222, Архивировано из оригинала 7 июня 2011 Архивная копия от 7 июня 2011 на Wayback Machine
  • Fröhlich, Albrecht; Taylor, Martin (1993), Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, ISBN 978-0-521-43834-6, MR 1215934