Регрессио́нный анализ — набор статистических методов исследования влияния одной или нескольких независимых переменных на зависимую переменную . Независимые переменные иначе называют регрессорами или предикторами, а зависимые переменные — критериальными или регрессантами. Терминология зависимых и независимых переменных отражает лишь математическую зависимость переменных (см. Корреляция), а не причинно-следственные отношения. Наиболее распространённый вид регрессионного анализа — линейная регрессия, когда находят линейную функцию, которая, согласно определённым математическим критериям, наиболее соответствует данным. Например, в методе наименьших квадратов вычисляется прямая (или гиперплоскость), сумма квадратов между которой и данными минимальна.

Цели регрессионного анализа править

  1. Определение степени детерминированности вариации критериальной (зависимой) переменной предикторами (независимыми переменными)
  2. Предсказание значения зависимой переменной с помощью независимой(-ых)
  3. Определение вклада отдельных независимых переменных в вариацию зависимой

Математическое определение регрессии править

Строго регрессионную зависимость можно определить следующим образом. Пусть   — случайные величины с заданным совместным распределением вероятностей. Если для каждого набора значений   определено условное математическое ожидание

  (уравнение регрессии в общем виде),

то функция   называется регрессией величины   по величинам  , а её графиклинией регрессии   по  , или уравнением регрессии.

Зависимость   от   проявляется в изменении средних значений   при изменении  . Хотя при каждом фиксированном наборе значений   величина   остаётся случайной величиной с определённым распределением.

Для выяснения вопроса, насколько точно регрессионный анализ оценивает изменение   при изменении  , используется средняя величина дисперсии   при разных наборах значений   (фактически речь идёт о мере рассеяния зависимой переменной вокруг линии регрессии).

В матричной форме уравнение регрессии (УР) записывается в виде:  , где   — матрица ошибок. При обратимой матрице X◤X получается вектор-столбец коэффициентов B с учётом U◤U=min(B). В частном случае для Х=(±1) матрица X◤X является рототабельной, и УР может быть использовано при анализе временны́х рядов и обработке технических данных.

Метод наименьших квадратов (расчёт коэффициентов) править

На практике линия регрессии чаще всего ищется в виде линейной функции   (линейная регрессия), наилучшим образом приближающей искомую кривую. Делается это с помощью метода наименьших квадратов, когда минимизируется сумма квадратов отклонений реально наблюдаемых   от их оценок   (имеются в виду оценки с помощью прямой линии, претендующей на то, чтобы представлять искомую регрессионную зависимость):

 

(  — объём выборки). Этот подход основан на том известном факте, что фигурирующая в приведённом выражении сумма принимает минимальное значение именно для того случая, когда  .

Для решения задачи регрессионного анализа методом наименьших квадратов вводится понятие функции невязки:

 

Условие минимума функции невязки:

 

Полученная система является системой   линейных уравнений с   неизвестными  .

Если представить свободные члены левой части уравнений матрицей

 

а коэффициенты при неизвестных в правой части — матрицей

 

то получаем матричное уравнение:  , которое легко решается методом Гаусса. Полученная матрица будет матрицей, содержащей коэффициенты уравнения линии регрессии:

 

Для получения наилучших оценок необходимо выполнение предпосылок МНК (условий Гаусса — Маркова). В англоязычной литературе такие оценки называются BLUE (Best Linear Unbiased Estimators — «наилучшие линейные несмещённые оценки»). Большинство исследуемых зависимостей может быть представлено с помощью МНК нелинейными математическими функциями.

Интерпретация параметров регрессии править

Параметры   являются частными коэффициентами корреляции;   интерпретируется как доля дисперсии Y, объяснённая  , при закреплении влияния остальных предикторов, то есть измеряет индивидуальный вклад   в объяснение Y. В случае коррелирующих предикторов возникает проблема неопределённости в оценках, которые становятся зависимыми от порядка включения предикторов в модель. В таких случаях необходимо применение методов анализа корреляционного и пошагового регрессионного анализа.

Говоря о нелинейных моделях регрессионного анализа, важно обращать внимание на то, идёт ли речь о нелинейности по независимым переменным (с формальной точки зрения легко сводящейся к линейной регрессии), или о нелинейности по оцениваемым параметрам (вызывающей серьёзные вычислительные трудности). При нелинейности первого вида с содержательной точки зрения важно выделять появление в модели членов вида  ,  , свидетельствующее о наличии взаимодействий между признаками  ,   и т. д. (см. Мультиколлинеарность).

См. также править

Литература править

  • Дрейпер Н., Смит Г. Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis. — 3-е изд. — М.: «Диалектика», 2007. — 912 с. — ISBN 0-471-17082-8.
  • Фёрстер Э., Рёнц Б. Методы корреляционного и регрессионного анализа = Methoden der Korrelation - und Regressiolynsanalyse. — М.: Финансы и статистика, 1981. — 302 с.
  • Захаров С. И., Холмская А. Г. Повышение эффективности обработки сигналов вибрации и шума при испытаниях механизмов // Вестник машиностроения : журнал. — М.: Машиностроение, 2001. — № 10. — С. 31—32. — ISSN 0042-4633.
  • Радченко С. Г. Устойчивые методы оценивания статистических моделей. — К.: ПП «Санспарель», 2005. — 504 с. — ISBN 966-96574-0-7, УДК: 519.237.5:515.126.2, ББК 22.172+22.152.
  • Радченко С. Г. Методология регрессионного анализа. — К.: «Корнийчук», 2011. — 376 с. — ISBN 978-966-7599-72-0.