Алгебраическое дополнение

Нахождение дополнительного минора и алгебраического дополнения

Алгебраическим дополнением элемента матрицы называется число

,

где  — дополнительный минор, определитель матрицы, получающейся из исходной матрицы путём вычёркивания i-й строки и j-го столбца.

СвойстваПравить

Алгебраическое дополнение элемента — это коэффициент, с которым этот самый элемент входит в определитель матрицы. Это утверждается следующей теоремой:

Теорема (о разложении определителя по строке/столбцу). Определитель матрицы   может быть представлен в виде суммы

 

Для алгебраического дополнения справедливо следующее утверждение:

Лемма о фальшивом разложении определителя. Сумма произведений элементов одной строки (столбца) на соответствующие алгебраические дополнения элементов другой строки (соответственно столбца) равна нулю, то есть   при   и  .

Из этих утверждений следует алгоритм нахождения обратной матрицы:

  • заменить каждый элемент исходной матрицы на его алгебраическое дополнение,
  • транспонировать полученную матрицу - в результате будет получена союзная матрица,
  • разделить каждый элемент союзной матрицы на определитель исходной матрицы.

См. такжеПравить