Открыть главное меню

Гиалуроновая кислота

Гиалуро́новая кислота́ (гиалурона́т, гиалурона́н) — несульфированный гликозаминогликан, входящий в состав соединительной, эпителиальной и нервной тканей. Является одним из основных компонентов внеклеточного матрикса, содержится во многих биологических жидкостях (слюне, синовиальной жидкости и др.). Принимает значительное участие в пролиферации и миграции клеток. Продуцируется некоторыми бактериями (напр. Streptococcus). В теле человека весом 70 кг в среднем содержится около 15 граммов гиалуроновой кислоты, треть из которой преобразуется (расщепляется или синтезируется) каждый день.[1]

Гиалуроновая кислота
Hyaluronic Acid
Hyaluronan.png
Химическое соединение
ИЮПАК (2S,3S,4S,5R,6R)-6-[(2S,3R,5S,6R)-3-ацетамидо-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,5S,6R)-3-ацетамино-2,5-дигидрокси-6-(гидроксиметил)оксан-4-ил]окси-2-карбокси-4,5-дигидроксиоксан-3-ил]окси-5-гидрокси-6-(гидроксиметил)оксан-4-ил]окси-3,4,5-тригидроксиоксан-2-карбоновая кислота
Брутто-формула C28H44N2O23
CAS 9004-61-9
PubChem 24759
DrugBank 08818
Лекарственные формы
инъекции, крем, лосьон, капсулы
Другие названия
Гиалуронат, Гиалуронан

ФункцииПравить

Гиалуроновая кислота является главным компонентом синовиальной жидкости, отвечающим за её вязкость. Наряду с лубрицином, гиалуроновая кислота — основной компонент биологической смазки.

Гиалуроновая кислота — важный компонент суставного хряща, в котором присутствует в виде оболочки каждой клетке (хондроцита). При связывании гиалуроновой кислоты с мономерами аггрекана в присутствии связующего белка, в хряще формируются крупные отрицательно заряженные агрегаты, поглощающие воду. Эти агрегаты отвечают за упругость хряща (устойчивость его к компрессии). Молекулярная масса (длина цепи) гиалуроновой кислоты в хряще уменьшается с возрастом организма, при этом общее её содержание увеличивается.[2]

Также гиалуроновая кислота входит в состав кожи, где участвует в регенерации ткани. При чрезмерном воздействии на кожу ультрафиолета происходит её воспаление («солнечный ожог»), при этом в клетках дермы прекращается синтез гиалуроновой кислоты и увеличивается скорость её распада.

Вследствие своего высокого содержания во внеклеточных матриксах гиалуроновая кислота играет важную роль в гидродинамике тканей, процессах миграции и пролиферации клеток, а также участвует в ряде взаимодействий с поверхностными рецепторами клеток, в особенности со своим первичным рецептором CD44. Участие гиалуроновой кислоты в процессе развития опухолей может быть обусловлено именно её взаимодействием с CD44.

В то время как сама гиалуроновая кислота связывается с CD44, есть свидетельства того, что трансдукция воспалительного сигнала продуктов её деградации осуществляется через рецепторы макрофагов и дендритных клеток TLR2, TLR4 или через оба этих рецептора. Толл-подобные рецепторы (TLR) и гиалуроновая кислота принадлежат к системе врождённого иммунитета.

СтруктураПравить

Структура гиалуроновой кислоты была установлена в 1930-х годах в лаборатории Карла Майера (Karl Meyer).

Гиалуроновая кислота представляет собой поли-(2-ацетамидо-2-дезокси-D-глюко)-D-глюкуроногликан, то есть полимер, состоящий из остатков D-глюкуроновой кислоты и D-N-ацетилглюкозамина, соединённых поочерёдно β-1,4- и β-1,3-гликозидными связями (смотри рисунок).

Молекула гиалуроновой кислоты может содержать до 25 000 таких дисахаридных звеньев. Природная гиалуроновая кислота имеет молекулярную массу от 5000 до 20 000 000 Да. Средняя молекулярная масса полимера, содержащегося в синовиальной жидкости у человека составляет 3 140 000 Да.[3]

Молекула гиалуроновой кислоты является энергетически стабильной в частности благодаря стереохимии составляющих её дисахаридов. Объёмные заместители пиранозного кольца находятся в стерически выгодных положениях, в то время как меньшие по размеру атомы водорода занимают менее выгодные аксиальные позиции.

БиосинтезПравить

Гиалуроновая кислота синтезируется классом встроенных мембранных белков, называющихся гиалуронат-синтетазами. В организмах позвоночных содержатся три типа гиалуронат-синтетаз: HAS1, HAS2 и HAS3. Эти ферменты удлиняют молекулу гиалуроновой кислоты, поочерёдно присоединяя к исходному полисахариду глюкуроновую кислоту и N-ацетилглюкозамин, при этом экструдируя («выдавливая») полимер через клеточную мембрану в межклеточное пространство.

БиодеградацияПравить

Гиалуроновая кислота деградируется семейством ферментов, называемых гиалуронидазами. В организме человека существуют по меньшей мере семь типов гиалуронидазоподобных ферментов, некоторые из которых являются супрессорами опухолеобразования. Продукты разложения гиалуроновой кислоты (олигосахариды и крайне низкомолекулярные гиалуронаты) проявляют проангиогенные свойства. Кроме того, недавние исследования показали, что фрагменты гиалуроновой кислоты, в отличие от исходного высокомолеколекулярного полисахарида, способны индуцировать воспалительный ответ в макрофагах и дендритных клетках[4] при повреждениях тканей и отторжении трансплантированной кожи.

ПрименениеПравить

Применение в медицинеПравить

Тот факт, что гиалуроновая кислота входит в состав многих тканей (кожа, хрящи, стекловидное тело), обусловливает её применение в лечении заболеваний, связанных с этими тканями (катаракта, остеоартрит и др.): эндопротезы синовиальной жидкости; хирургическая среда для офтальмологических операций; препараты («Repleri», «Рестилайн», «Ювидерм», Zfill, Adoderm, а также препараты нового поколения Rejeunesse и Teosyal) для мягкого разглаживания тканей[5] и заполнения морщин (в том числе в виде внутрикожных инъекций) в косметической хирургии. Гиалуроновая кислота способна, согласно научным прогнозам, связанным с исследованиями Хайфского университета в 2013 году, лечь в основу новых эффективных противораковых препаратов[6].

Первый биомедицинский продукт гиалуронана, «Healon», был разработан в 1970—1980-х годах компанией «Pharmacia» и был предназначен для использования в хирургии глаза (например, пересадка роговицы, операции по удалению катаракты, операции при глаукоме, и операции по восстановлению отслоившейся сетчатки). Другие биомедицинские компании также производят бренды гиалуроновой кислотой для глазной хирургии. Нативная гиалуроновая кислота имеет сравнительно короткий период полураспада, так что были привлечены различные методы производства для увеличения длины цепи и стабилизации молекулы для применения в медицинских целях. Введение перекрестных связей на основе белка, введение молекул, очищающих от свободных радикалов, таких как сорбитол, и минимальная стабилизация цепей гиалуроновой кислоты с помощью химических реактивов, например, стабилизация NASHA — это все методы, которые были использованы. Летом 2016 года узбекско-латвийское СП Rigard Farmsintez объявило о начале выпуска нового препарата на основе молекулярных комплексов из низкомолекулярных биологически активных молекул и высокомолекулярного природного биополимера — гиалуроновой кислоты. Учёные заявляют о прорыве в лечении онкологии. «Пациент будет принимать лекарство в виде капсул. Болезнь, можно сказать, лечится как грипп»[7].

На данный момент на основе натрия гиалуроната и хондроитина сульфата натрия создан препарат Альфазокс, являющийся единственным на данный момент представителем группы препаратов эзофагопротекторов для лечения ГЭРБ[8].

Применение в косметологииПравить

Гиалуроновая кислота используется в косметике как составная часть средств ухода за кожей: кремов, губной помады, лосьонов и пр. По утверждению производителей косметики, их эффективность основывается на «способности этого активного вещества связывать влагу — 1 молекула удерживает до 1000 молекул Н2O» и «обеспечивать правильное расположение цепочек основных белков кожи — эластина и коллагена, благодаря чему улучшается сама структура эпидермиса», в результате чего «достигается омолаживающий эффект редермализации»[9].

Следует отметить, что бо́льшая часть этих рекламных заявлений ничем не обоснована и безграмотна, так, заявление «1 молекула гиалуроновой кислоты удерживает до 1000 молекул воды» при средней молекулярной массе гиалуроновой кислоты синовиальной жидкости человека 3 140 000 Да[источник не указан 57 дней] значит, что максимальная влажность гиалуроновой кислоты составляет лишь 0,5 % по массе[источник не указан 57 дней].

Происхождение названияПравить

Название «гиалуроновая кислота» этому веществу было дано в 1934 году К. Мейером (K. Meyer) и Дж. Палмером (J. W. Palmer), которые впервые выделили его из стекловидного тела глаза[10]. Название происходит от греч. hyalos — стекловидный и уроновая кислота.

Сопряжённое основание для гиалуроновой кислоты носит название гиалуронат. Поскольку молекула полимера в организме обычно существует в промежуточной полианионной форме, многие авторы считают более корректным использование термина гиалуронан.

См. такжеПравить

ПримечанияПравить

  1. Stern R. Hyaluronan catabolism: a new metabolic pathway (англ.) // Eur J Cell Biol (англ.) : journal. — 2004. — August (vol. 83, no. 7). — P. 317—325. — PMID 15503855.
  2. Holmes M W A., Bayliss M T., Muir H. Hyaluronic acid in human articular cartilage. Age-related changes in content and size (англ.) // Biochem J (англ.) : journal. — 1988. — Vol. 250. — P. 435—441. Бесплатная PDF-версия
  3. Saari H et al. (1993) Differential effects of reactive oxygen species on native synovial fluid and purified human umbilical cord hyaluronate. Inflammation 17:403-415.
  4. Олигосахариды и дендритные клетки. medgel.ru. Дата обращения 24 ноября 2017.
  5. Увеличение губ гиалуроновой кислотой.
  6. Подземный грызун помог израильским ученым найти мощный антиканцероген. Дата обращения 24 августа 2013.
  7. Лечится как грипп: узбекский ученый заявляет о прорыве в онкологии
  8. Альфазокс в справочнике РЛС. www.rlsnet.ru. Дата обращения 18 июня 2019.
  9. Гиалуроновая кислота.
  10. K. Meyer and J. W. Palmer. The polysaccharide of the vitreous humor (англ.) // J. Biol. Chem. : journal. — 1934. — Vol. 107. — P. 629—634. Бесплатная PDF-версия