Переходный процесс

(перенаправлено с «Переходные процессы»)

Перехо́дный проце́сс — в теории систем представляет собой изменения координат динамической системы во времени до некоторого установившегося состояния; возникает под влиянием возмущающих воздействий, изменяющих её состояние, структуру или параметры, а также вследствие ненулевых начальных условий[B: 1].

Затухающие колебания — типичный переходный процесс, при котором некоторый параметр какое-то время колеблется вокруг установившегося значения

Характеристики

править

Изучение переходных процессов — важный шаг в процессе анализа динамических свойств и качества рассматриваемой системы. Широкое применение нашло экспериментальное и аналитическое определение и построение переходных процессов для наиболее неблагоприятных условий работы динамической системы при внешних возмущениях типа дельта-функции, ступенчатом или синусоидальных воздействиях[B: 1][B: 2].

Оценка качества САУ по виду кривой переходного процесса производится при помощи так называемых прямых показателей качества — перерегулирования, допустимого числа колебаний и времени переходного процесса. Обычно рассматривают переходный процесс, возникающий в системе при воздействии единичной ступенчатой функции, т. е. переходная функция замкнутой системы[1].

Время переходного процесса

править

Длительность переходного процесса в системе характеризует её быстродействие, а его характер определяет качество системы. За количественную характеристику длительности переходного процесса принимают время, необходимое выходному сигналу системы для того, чтобы приблизиться к своему установившемуся значению, т. е. время, по истечении которого выполняется равенство:

 
где   — установившееся значение;
  — наперёд заданное положительное число[1].


В линейных непрерывных динамических системах принято рассматривать переходной процесс, вызванный единичным ступенчатым возмущением, но в этом случае установившееся значение достигается за бесконечно большое время. Если же ограничить точность достижения установившегося значения некоторой малой величиной  , то тогда длительность переходного процесса   будет конечной величиной[B: 1].

В приложениях теории управления обычно в САУ принимают   равной 0,01—0,05 от  , т. е. переходный процесс считают закончившимся, когда переходная функция отличается не более, чем на 1–5 % от своего установившегося (стационарного) значения[1].

Перерегулирование

править

Перерегулирование (определяется величиной первого выброса) — отношение разности максимального значения переходной характеристики и её установившегося значения к величине установившегося значения. Измеряется обычно в процентах.

Степень затухания переходного процесса

править

Степень затухания переходного процесса определяется относительным уменьшением соседних амплитуд переходной характеристики[B: 3].

Числителем является амплитуда первого колебания. Степень затухания показывает во сколько раз уменьшается амплитуда второго колебания по сравнению с первым.

Степень затухания системы зависит от показателя колебательности   (см. ниже).

Логарифмический декремент колебания

править

Логарифмический декремент колебания — натуральный логарифм отношения амплитуд двух соседних перерегулирований. Обратная ему величина показывает, за какое число колебаний их амплитуда уменьшается в   раз (  — основание натуральных логарифмов). Уместен лишь для характеристики линейных систем[B: 4].

Колебательность

править

Характеризует склонность системы к колебаниям и определяется как модуль отношения амплитуд второго колебания к амплитудам первого колебания. Колебательность системы характеризуют при помощи показателя колебательности  , который представляет собой отношение резонансного пика при резонансной частоте к значению АЧХ при нулевой частоте[2].

Показатель колебательности связан со степенью колебательности формулой:

 

При увеличении  , уменьшается показатель колебательности   и соответственно происходит уменьшение степени колебательности.

Установившаяся ошибка

править

Установившаяся ошибка системы — разница между предполагаемым и реальным значением выходного сигнала при времени, стремящемся к бесконечности. В идеальных астатических системах установившаяся ошибка равна нулю.

Примеры

править

Электрические цепи

править

В электрической цепи переходный процесс характеризуется плавным инерционным изменением тока и напряжения в цепи в ответ на приложенное внешнее воздействие[B: 5].

Формула, описывающие протекание простейших переходных процессов (разряд конденсатора через резистор):

   
где   — значение напряжения на конденсаторе в момент перед началом переходного процесса,
  — постоянная времени переходного процесса, С — ёмкость, R — сопротивление элементов цепей.

Для цепей, содержащих индуктивность, если можно пренебречь активным сопротивлением, постоянная времени равна:

 

См. также

править

Примечания

править
  1. 1 2 3 Пономарёв, 1974, § 5.7. Оценка запаса устойчивости и быстродействия по кривой процесса регулирования, с. 201—202.
  2. МЭИ, 2011, 2.3. Решение линейных дифференциальных уравнений во временной области, с. 44—48.

Литература

править

Книги

  1. 1 2 3 Энциклопедия кибернетики / Глушков В. М.. — Киев: Глав. ред. УСЭ, 1974. — 624 с.
  2. Основы автоматического регулирования и управления / Пономарев В. М. и Литвинов А. П.. — М.: Высшая школа, 1974. — 439 с.
  3. Управление и инноватика в теплоэнергетике / Андрюшин А. В., Сабанин В. Р., Смирнов. Н. И.. — М.: МЭИ, 2011. — 392 с. — ISBN 978-5-38300539-2.
  4. Андронов А. А., Витт А. А., Хайкин С. Э. Теория колебаний. — 2-е изд., перераб. и испр.. — М.: Наука, 1981. — 918 с.
  5. Веников В. А. Переходные электромеханические процессы в электрических системах. — М.: Высшая школа, 1978. — 415 с.