Позином это расширение понятия полином, как суммы мономов, с помощью расширения понятия моном. Из свойств таких обобщённых мономов следует ограничение области определения функции, задаваемой позиномом, на строго положительные значения.

ОпределениеПравить

Позином — обобщённый полином вида:

  [1],

где  мономы.

ПримерПравить

 

СвойстваПравить

  • если   — позином,   — константа, то   — позином,
  • если   — позиномы, то   — тоже позином,
  • если   — позиномы, то   — тоже позином.

Таким образом, множество позиномов является, как и множество полиномов, кольцом.

Поскольку мономы - частный случай позиномов, множество позиномов является, также, алгеброй над кольцом полиномов.

  • если   — позином,  моном, то   - позином,
  • если   — позином, то   целое  — позином.

ПриложенияПравить

Позиномы являются базовым понятием в геометрическом программировании. С помощью позиномов описываются и решаются задачи из широкого круга математических проблем, в частности к нему относятся: оптимальное планирование, оптимальное управление, экономические задачи и расчёт рисков, кодирование и др.

ПримечанияПравить

ЛитератураПравить

  • Р. Даффин, Э. Питерсон, К. Зенер. Геометрическое программирование. — М.: Мир, 1972. — 311 с.