Теорема Вивиани

Теорема Вивиани — утверждение в геометрии треугольника, согласно которому сумма расстояний от произвольной точки внутри равностороннего треугольника до его сторон постоянна и равна высоте треугольника. Названа по имени итальянского математика Винченцо Вивиани.

Сумма длин отрезков равна высоте равностороннего треугольника.

В части постоянства суммы расстояний от произвольной внутренней точки до сторон утверждение может быть обобщено на равносторонние многоугольники и многоугольники с равными углами[1].

ДоказательствоПравить

Теорема может быть доказана путём сравнения площадей треугольников. Пусть   — равносторонний треугольник, в котором   — высота,   — длина каждой из сторон. Точка   выбирается произвольно внутри треугольника, и тогда  ,  ,   — расстояния от точки   до сторон треугольника. Тогда площадь   можно определить следующим образом:

 ,

из чего вытекают следующие соотношения:

 ,

то есть:

 .

ПриложенияПравить

 
Треугольник взрываемости тройной смеси метан-кислород-азот. Синяя прямая соответствует смесям метана с воздухом, красная линия отвечает стехиометрическому составу.
ВПВ — верхний предел взрываемости;
НПВ — нижний предел взрываемости;
ПК — пороговая концентрация взрываемости.

Теорема Вивиани позволяет получать координаты точек на трёхкомпонентные диаграммы (англ.) путём проведения линий, параллельных сторонам равностороннего треугольника. В частности, таким образом можно строить диаграммы воспламеняемости (англ.).

В более общем случае, они позволяют таким же образом задавать координаты на правильном симплексе.

ПримечанияПравить

СсылкиПравить