Эпсилон-сеть

ε-сеть (эпсилон-сеть, ε-плотное множество) для подмножества метрического пространства есть множество из того же пространства такое, что для любой точки найдётся точка , удалённая от не более чем на ε.

Связанные определенияПравить

  • Метрическое пространство, в котором для каждого   существует конечная  -сеть, называется вполне ограниченным.
  • Метрика   на множестве   называется вполне ограниченной, если   — вполне ограниченное метрическое пространство.
  • Семейство метрических пространств   таких, что для любого   есть натуральное число   такое, что каждое пространство   допускает  -сеть из не более чем   точек называется универсально вполне ограниченной.
  • Топологическое пространство, гомеоморфное вполне ограниченному метрическому пространству, называется метризуемым вполне ограниченной метрикой.

ПримерыПравить

СвойстваПравить

  • Метрическое пространство имеет эквивалентную вполне ограниченную метрику тогда и только тогда, когда оно сепарабельно.
  • Топологическое пространство метризуемо вполне ограниченной метрикой тогда и только тогда, когда оно регулярно и удовлетворяет второй аксиоме счётности.
  • Метрическое пространство компактно тогда и только тогда, когда оно полно и вполне ограниченно. В чуть более общей формулировке, теорема Хаусдорфа о компактности гласит, что для относительной компактности подмножества   метрического пространства   необходимо, а в случае полноты пространства   и достаточно, чтобы при любом   существовала конечная ε-сеть из элементов множества  .
  • Полное метрическое пространство компактно тогда и только тогда, когда для любого   в нём существует компактная ε-сеть.

ПримечанияПравить

  1. Соболев В. И. Лекции по дополнительным главам математического анализа. — М.: Наука, 1968 — стр. 59.

ЛитератураПравить

  • Д. Ю. Бураго, Ю. Д. Бураго, С. В. Иванов. Курс метрической геометрии. Москва-Ижевск: Институт компьютерных исследований, 2004, 512 стр. ISBN 5-93972-300-4.
  • Энгелькинг, Р. Общая топология. — М.: Мир, 1986. — 752 с.