Политетрафторэтиле́н, или фторопла́ст-4 (−C2F4−)n, также известный под торговой маркой тефлон — полимер тетрафторэтилена (ПТФЭ), широко применяемый в технике и быту. Этот материал обладает редкими физическими и химическими свойствами — хорошим скольжением и химической инертностью.

Тефлон
Изображение химической структуры
Изображение молекулярной модели
Изображение молекулярной модели
Общие
Систематическое
наименование
Poly​(difluoromethylene)​
Сокращения

PTFE,

ПТФЭ
Традиционные названия Тефлон, Фторопласт-4
Хим. формула (C2F4)n
Физические свойства
Состояние твёрдое
Плотность 2,2 г/см³
Предел прочности 15..27 Н/мм²
Термические свойства
Температура
 • разложения 415 °C
Уд. теплоёмк. 1040 Дж/(кг·К)
Теплопроводность 0,25 Вт/(м·K)
Коэфф. тепл. расширения (8..25)∙10-5
Классификация
Рег. номер CAS 9002-84-0
Рег. номер EINECS 618-337-2
ChEBI 53251
Безопасность
NFPA 704
Огнеопасность 0: Негорючее веществоОпасность для здоровья 1: Воздействие может вызвать лишь раздражение с минимальными остаточными повреждениями (например, ацетон)Реакционноспособность 0: Стабильно даже при действии открытого пламени и не реагирует с водой (например, гелий)Специальный код: отсутствуетNFPA 704 four-colored diamond
0
1
0
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе
Фторопласт-4 (прессованный цилиндр)

Слово «Тефлон» является зарегистрированным товарным знаком компании Chemours (спин-офф компания корпорации DuPont). Непатентованное название вещества — «политетрафторэтилен» или «фторополимер». В СССР и России традиционное техническое название этого материала — фторопласт-4.

ИсторияПравить

Политетрафторэтилен был случайно синтезирован в джексоновской лаборатории (англ. Jackson Laboratory) в апреле 1938 года 27-летним сотрудником компании Kinetic Chemicals Роем Планкеттом[1][2]. Компания Kinetic Chemicals была создана DuPont и Frigidaireruen (дочерняя компания General Motors) для разработки хладагентов (фреонов)[1]. В процессе исследований Планкетт, оставив баллоны с закачанным в них под высоким давлением тетрафторэтиленом в сухом льду, обнаружил вместо газа в одних баллонах белый парафиноподобный порошок, а в других плёнку — что находившийся под давлением тетрафторэтилен полимеризовался при низкой температуре[1][2].

Новый материал оказался одним из самых химически инертных твёрдых веществ — первооткрывателю не удалось растворить его в холодной и горячей воде, ацетоне, простых эфирах, кислотах и спиртах[3], в целом он чрезвычайно устойчив к воздействию агрессивных сред[1].

Политетрафторэтилен также обладал новыми уникальными на тот момент физическими свойствами — он не обугливается и не плавится под нагретым паяльником, не набухает (не впитывает жидкости), не гниет, не плесневеет, не разрушается под прямыми солнечными лучами[3]. Он также обладает уникальными фрикционными свойствами, это очень скользкий материал[1].

Технологию промышленного получения политетрафторэтилена Планкетт с коллегами разрабатывали следующий год[1].

1 июля 1939 года Планкетт подал заявку в патентное ведомство от имени компании Kinetic Chemicals, и в 1941 году был выдан патент №2230654[3], а в 1945 году DuPont зарегистрировала для него торговую марку «Тефлон»[4]. В 1949 году Kinetic Chemicals стала подразделением американской компании DuPont.[источник не указан 24 дня]

Первое практическое применение политетрафторэтилен получил в Манхэттенском проекте[3]. Тефлоновые прокладки были использованы в установке газодиффузного разделения изотопов урана, где прокладки из других материалов оказались проницаемыми для агрессивного тетрафторида урана[5].

В 1948 году DuPont произвела 900 тонн Тефлона на построенном для этого заводе Washington Works вблизи Паркерсберга в штате Западная Виргиния[5].

В 1953 году политетрафторэтилен уже широко применялся в промышленном производстве, и DuPont пыталась найти ему бытовое применение[3].

Когда DuPont проводила тестирование тефлона для разных применений, французский инженер Марк Грегуар (фр. Marc Gregoire) раздобыл небольшое его количество, намереваясь использовать его в рыболовных снастях (чтобы они меньше запутывались и с целью облегчить их распутывание[6]). Однако его жена попросила у него покрыть этим скользким материалом кухонную сковородку. Результат оказался настолько удачным, что Грегуар запатентовал антипригарную посуду в 1954 и создал завод по её производству в 1956 году[3]. Свою посуду Грегуары назвали «Tefal» — составили название из первых слогов слов Teflon и aluminium[6].

В дальнейшем Тефлон нашёл широчайшее применение. Из него делают водопроводные трубы и клапаны, он используется в лаке для ногтей, в тканях (например, его нити содержит Гортекс), в кардиостимуляторах, зубных и внутренних протезах, хирургических шовных нитях, в печатных платах, кабелях, космических костюмах и многих других промышленных изделиях[5].

К 1994 году путём радиоактивного облучения был получен и изучен «сшитый политетрафторэтилен» (cross-linked PTFE). Новый материал обладает устойчивостью к радиации и к воздействию высокой температуры[7].

СвойстваПравить

ФизическиеПравить

Тефлон — белое, в тонком слое прозрачное вещество, по виду напоминающее парафин или полиэтилен. Плотность по ГОСТ 10007-80 от 2,18 до 2,21 г/см3. Обладает высокой тепло- и морозостойкостью, остаётся гибким и эластичным при температурах от −70 до +270 °C, прекрасный изоляционный материал. Тефлон обладает очень низкими поверхностным натяжением и адгезией и не смачивается ни водой, ни жирами, ни большинством органических растворителей.[источник не указан 24 дня]

Фторопласт — мягкий и текучий материал, поэтому имеет ограниченное применение в нагруженных конструкциях. Обладает очень низкой адгезией (липучестью).[источник не указан 24 дня]

DuPont указывает температуру начала плавления согласно стандарту ASTM D3418 для разных типов тефлона от 260 °С до 327 °С[8].

ХимическиеПравить

Политетрафторэтилен — один из самых химически инертных твёрдых материалов, он устойчив к агрессивным средам — не растворяется в воде, кислотах, ацетоне, спиртах и простых эфирах[1].[3].

По своей химической стойкости превосходит все известные синтетические материалы и благородные металлы. Разрушается расплавами щелочных металлов, фтором и трифторидом хлора.[источник не указан 24 дня]

ПроизводствоПравить

Производство политетрафторэтилена включает в себя три стадии: на первой стадии получают хлордифторметан заменой атомов хлора на фтор в присутствии соединений сурьмы (реакция Свартса) между трихлорметаном (хлороформом) и безводным фтористым водородом; на второй стадии получают тетрафторэтилен пиролизом хлордифторметана; на третьей стадии осуществляют полимеризацию тетрафторэтилена[9][10].

Изделия из ф-4 производятся способом холодного прессования с последующим запеканием при температуре 365±5 °C[11]. Процесс прессования идёт из водной эмульсии ПТФЭ в присутствии ПАВ (например, перфтороктановой или перфтороктансульфоновой кислот), которое стабилизирует эмульсию и делает возможным производство воднодисперсного политетрафторэтилена.[источник не указан 24 дня]

Основной производитель фторопласта в России Кирово-Чепецкий химкомбинат имени Константинова, г. Кирово-Чепецк Кировской области.[источник не указан 24 дня]

ПрименениеПравить

Фторполимеры применяют в химической, электротехнической и пищевой промышленности, для производства мембранной одежды, в медицине, в транспортных средствах, в военных целях, в основном в качестве покрытий. Наибольшую известность фторполимеры получили благодаря широкому применению в производстве посуды с противопригарным покрытием[12].

Промышленность и техникаПравить

В различных отраслях промышленности волокна, полученные из политетрафторэтилена (тефлон, полифен)[13], нашли широкое применение в качестве высокотемпературных мешочных фильтров, разных типов теплостойких прокладок, нитей для текстильных тканей, а также в автомобильном оснащении, промышленных фильтрах общего назначения, элементах запорных и регулирующих клапанов, мешалок и насосов, оборудования для фильтрации и разделения.[источник не указан 24 дня]

В авиации, например, из фторопласта изготавливают гибкие металлопластиковые трубопроводы гидросистем, работающие под высоким давлением (более 200 кгс/см2) и с высокой температурой рабочей жидкости[источник не указан 1470 дней].

Из фторопласта марки Ф-4 можно изготовить: ректификационные колонны, насосы, трубы, клапаны, сильфоны, облицовочные плитки, сальниковые набивки. Как диэлектрик, политетрафторэтилен успешно применяется в технике высоких и ультравысоких частот. Прокатанная фторопластовая плёнка используется при изготовлении высококачественных кабелей, проводов, конденсаторов, для изоляции катушек, пазов электрических машин. В качестве конструкционного материала политетрафторэтилен применяется при изготовлении различных деталей машин. Особенно широкое применение политетрафторэтилен находит при изготовлении подшипников, работающих без смазочного материала, с ограниченным количеством смазочного материала и при наличии коррозионной среды[11].

Благодаря химической инертности, гидрофобности (контактный угол натекания 108±2°), олеофобности и текучести материал получил широкое распространение для уплотнения резьбовых и фланцевых соединений (лента ФУМ)[14].

 
Тефлоновая ФУМ-лента, применяемая для герметизации резьбовых соединений в сантехнике

Смазочный материалПравить

Фторопласт-4 (тефлон) — великолепный антифрикционный материал[15] с коэффициентом трения скольжения, наименьшим из известных доступных конструкционных материалов (даже меньше, чем у тающего льда). Из-за мягкости и текучести цельные подшипники скольжения из фторопласта используют редко. В высоконагруженных узлах применяют металлофторопластовые подшипники-вкладыши и металлофторопластовые опорные ленты. Такой элемент скольжения выдерживает десятки килограммов на квадратный миллиметр и состоит из металлической основы, на которую нанесено фторопластовое покрытие[16]. Также используется как антифрикционный присадочный материал (твёрдый смазочный материал) улучшающий свойства скольжения базовых полимеров например полиэфирэфиркетона (англ. PEEK) или полифениленсульфида (англ. PPS) и получить «подшипниковую» композицию обладающую высокой прочностью, износостойкотью, стойкостью к ползучести и хорошими антифрикционными свойствами.[источник не указан 24 дня]

Известны смазочные материалы с введённым в их состав мелкодисперсным фторопластом. Их отличает то, что наполнитель, оседая на трущихся металлических поверхностях, позволяет в ряде случаев некоторое время работать механизмам с полностью отказавшей системой смазочного материала, только за счёт антифрикционных свойств фторопласта.[источник не указан 3577 дней]

ЭлектроникаПравить

Тефлон широко используется в высокочастотной технике, так как, в отличие от близких по свойствам полиэтилена или полипропилена, имеет очень слабо меняющийся с температурой коэффициент диэлектрической проницаемости, высокое напряжение пробоя, а также крайне низкие диэлектрические потери. Эти свойства, наряду с теплостойкостью, обусловливают его широкое применение в качестве изоляции проводов, особенно высоковольтных, всевозможных электротехнических деталей, при изготовлении высококачественных конденсаторов, печатных плат.[источник не указан 24 дня]

В электронной технике специального назначения широко используется проводка с изоляцией из фторопласта, стойкая к агрессивным средам и высокой температуре — провода марки МГТФ, МС и ряд других. Провод в тефлоновой изоляции невозможно проплавить паяльником. Недостатком фторопласта является высокая холодная текучесть: если держать провод во фторопластовой изоляции под механической нагрузкой (например, поставить на него ножку мебели), провод через некоторое время может оголиться.[источник не указан 24 дня]

 
Печатная плата из Фторопласта-4

МедицинаПравить

Благодаря биологической совместимости с организмом человека политетрафторэтилен с успехом применяется для изготовления имплантатов для сердечно-сосудистой и общей хирургии, стоматологии, офтальмологии[17]. Тефлон считается наиболее пригодным материалом для производства искусственных кровеносных сосудов[18] и сердечных стимуляторов[19].

В стоматологии нерезорбируемые мембраны из ПТФЭ с усилением титановым каркасом или без последнего, используются при методиках направленной костной регенерации (НКР). Также существует шовный материал из ПТФЭ[20].

В 2011 году впервые применён для пластики повреждённых носовой перегородки и стенок околоносовых пазух вместо титановых сеток. Через 12—15 месяцев имплантат полностью растворяется и замещается собственной тканью пациента[21].

Из-за низкого трения и несмачиваемости насекомые не способны ползти по тефлоновой стене. В частности, тефлоновая защита применяется при содержании нелетающих насекомых, чтобы они не смогли вылезти наружу[источник не указан 1470 дней].

Пищевая промышленность и бытПравить

 
Из-за низкой адгезии и хорошей термостойкости тефлон используется в качестве антипригарного покрытия для сковородок и другой посуды.

Благодаря низкой адгезии, несмачиваемости и теплостойкости тефлон в виде покрытия широко применяется для изготовления экструзионных форм и форм для выпечки, а также сковород и кастрюль.

Тефлон также используется в производстве других бытовых приборов. Тефлоновое покрытие в виде тончайшей плёнки наносят на лезвия бритв, что значительно продлевает срок их службы и облегчает бритьё[источник не указан 1470 дней].

Уход за посудой с тефлоновым покрытиемПравить

Тефлоновое покрытие не обладает большой прочностью, поэтому при приготовлении пищи в такой посуде следует использовать только мягкие — деревянные, пластиковые или покрытые слоем пластика — принадлежности (лопатки, половники и т. п.). Посуду с тефлоновым покрытием нужно мыть в тёплой воде мягкой губкой, с добавлением жидкого моющего средства, без использования абразивных губок или чистящих порошков, а также избегать её перегрева выше 300°C.

ОдеждаПравить

В производстве современной высокотехнологичной одежды применяются мембранные материалы на основе экспандированного политетрафторэтилена.

Путём физической деформации тефлона получается тонкая пористая плёнка, которая наносится на ткани и используется при пошиве одежды. Мембранные материалы, в зависимости от особенностей изготовления, могут обладать как ветрозащитными, так и водоизоляционными свойствами, при этом нормированный[какой?] размер пор мембраны из политетрафторэтилена позволяет материалу эффективно пропускать испарения тела человека[источник не указан 1470 дней].

  • Гор-Тэкс — водонепроницаемая дышащая мембранная ткань.

Другие изделияПравить

Изделия, в производстве которых используется тефлон:

  • обогревательные лампы;
  • переносные обогревательные приборы (электрогрелки);
  • пластины утюгов;
  • покрытия гладильных досок;
  • конфорки плит;
  • противни;
  • электрогрили;
  • приборы для изготовления попкорна;
  • кофейники;
  • скалки (с противоналипающим покрытием);
  • машины для выпечки хлеба;
  • поддоны под вертел или решётку;
  • формочки для мороженого;
  • унитазы c тефлоновым покрытием;
  • кипятильники;
  • штопоры;
  • поверхности кухонных плит;
  • кухонная утварь;
  • кастрюли и сковороды для жарки;
  • воки (китайские кастрюли для жарки овощей и мяса);
  • формы для выпекания;
  • пресс для горячих бутербродов;
  • вафельницы;
  • оптические криостаты;
  • бритвенные лезвия;
  • внутренние покрытия стволов танков;[источник не указан 4293 дня]
  • электроракетные двигатели[источник не указан 4395 дней].
  • лакокрасочные материалы[источник не указан 4080 дней]
  • уплотнения шарнирно-сочленённых механизмов (шарниров)

Опасность политетрафторэтиленаПравить

Мнимое и реальное воздействие на здоровье человекаПравить

Возможное негативное влияние политетрафторэтилена на здоровье человека уже много лет является предметом слухов. Некоторые люди считают, что поцарапанная покрытая тефлоном посуда непригодна к использованию, что якобы из трещин в покрытии выделяются вредные вещества, способные вызвать рак. СМИ публикуют статьи с кричащими заголовками о вреде тефлоновой посуды. В действительности полимер очень устойчив и инертен, не вступает в реакцию с пищей, водой, бытовыми химическими средствами, при попадании в организм не приносит никакого вреда здоровью, наоборот, используется при переедании в качестве инертного наполнителя для достижения чувства насыщения без переедания. А Американское онкологическое общество указывает, что нет никаких причин опасаться заболеть раком при использовании тефлоновых антипригарных покрытий[22].

Опасны только продукты термического разложения политетрафторэтилена, отравление которыми может произойти, если оставить пустую тефлоновую посуду на огне на много часов (термолиз этого материала начинается при температуре выше 360 °C), и это, как шутит профессор Кайл Стинленд (англ. Kyle Steenland), «будет наименьшей вашей проблемой, ведь весь ваш дом к тому моменту будет в огне»[22].

При попадании в организм политетрафторэтилен безвреден[19]. Всемирная организация здравоохранения обратилась в Международную организацию борьбы с раком с просьбой провести опыт на крысах. Опыт показал, что при употреблении с пищей до 25 % политетрафторэтилена он не оказывает никакого воздействия. Данное исследование было проведено в 1960-х годах и повторно в 1980-х годах на распространённой популяции крыс, которые каждый день потребляли ПТФЭ в количестве, соответствующем 25 % общего приёма пищи[23].

Исследования французских экспертов, опубликовавших в журнале «60 Millions de Consomateurs» результаты лабораторного исследования 13 образцов сковородок, подтверждают безопасность противопригарного покрытия. Французский журнал сообщает, что в результате испытаний была доказана полная безопасность сковород. Все образцы успешно прошли испытание после тысячекратного натирания поверхностей абразивным материалом в течение двух циклов.[источник не указан 24 дня]

Опасность для здоровья представлет перфтороктановая кислота (ПФОК), ранее использовавшаяся в производстве политетрафторэтилена. В частности, ПФОК влияет на работу внутренних органов. В Европе и США использование ПФОК в производстве ограничивается законодательно, при этом Американское онкологическое общество указывает, что канцерогенность ПФОК до сих пор не доказана — то есть, несмотря на приносимый ей вред здоровью человека, онкологические заболевания она не вызывает[22].

При перегреве[каком?] фторопласта происходит термическое разложение с выделением ядовитых веществ[24].

При использовании сковородок с антипригарным покрытием следует соблюдать технику безопасности и следовать инструкции, а именно — не оставлять на долгое время на включённой плите посуду без какой-либо еды на ней[22].

Производственные загрязненияПравить

Основным источником биологических рисков при производстве фторполимеров считается перфтороктановая кислота (ПФОК, PFOA). Это соединение применялось в США с 1950-х годов[25]. Первые сведения о влиянии на здоровье были получены на заводах 3M и DuPont в 1960-х годах. В 1980-х годах к изучению биологических эффектов подключились научные группы. В конце 1990-х годов на проблему обратили внимание надзорные органы США, результатом чего стало признание опасности вещества и нормирование предельных концентраций. Технологические процессы на территории США были изменены с целью полного отказа от PFOA. Были запущены широкомасштабные кампании по контролю концентраций PFOA и уточнению его влияния на здоровье человека[26][25].

DuPont получил судебные претензии (о чём был снят фильм «Тёмные воды», 2019) на сотни миллионов долларов от работников компании и окрестных жителей в связи с вредом здоровью и замалчиванием опасности производства[25]. В 2006 году фирма DuPont, к тому моменту единственный производитель PFOA в США, согласилась удалить остатки реагента со своих предприятий к 2015 году[27]. По официальной информации компании, с января 2012 года DuPont не использует PFOA в производстве посуды и форм для выпечки[28].

Известно, что перфтороктановая кислота распадается при температуре 190 °C, тогда как технологический процесс спекания основы сковороды с антипригарным покрытием происходит при температуре 420 °C[29]. Таким образом, предполагается, что согласно технологическому процессу, наличие PFOA в готовой сковороде маловероятно[30]. Тем не менее исследование, проведённое в 2005 году, выявило содержание PFOA в PTFE-покрытии новой посуды от 4 до 75 мкг/кг (при содержании в пищевой плёнке около 1800 мкг/кг и в материале упаковок для попкорна до 290 мкг/кг)[31].

Независимые европейские исследования показали, что антипригарные покрытия не содержат PFOA в количествах, превышающих допустимые безопасные пределы[32]. Китайская академия контроля качества, инспекции и карантина (GAQSIQ), а также датский технологический институт подтверждают, что воздействие PFOA, используемой при производстве посуды, не обнаружено[32][33][34].

На 2012 год в России нет нормативных документов, ограничивающих примеси во фторопластах, поэтому в страну попадает продукция, полученная вторичной переработкой этих материалов, загрязнённая перфтороктановой кислотой и другими загрязняющие полимер примеси, вызывающие снижение биосовместимости[35].

Термическое разложение политетрафторэтиленаПравить

Стандарт ГОСТ 10007-80[36] нормирует рабочий диапазон температур фторопласта до +260 °С и прямо указывает на опасность выделения ядовитых газов выше этой температуры. DuPont не указывает характеристик выделения ядовитых веществ, но даёт температуру плавления согласно стандарту ASTM D3418 для разных типов тефлона от 260 °С до 327 °С[8].

Пиролиз политетрафторэтилена начинается при температуре выше 200 °C, процесс медленно протекает вплоть до температуры 420 °C. При температурах от 500 до 550 °C потеря веса деградирующего материала достигает 5—10 % в час в зависимости от условий среды. Продукты разложения при температурах от 300 до 360 °C — гексафторэтан и октафторциклобутан, при температуре выше 380 °С к ним добавляется октафторизобутилен, а от 500 °C до 550 °Cгексафторпропилен и прочие перфторолефины[37].

Среди продуктов теплового разложения политетрафторэтилена самым[нет в источнике] опасным считается перфторизобутилен — крайне ядовитый газ, который примерно в 10 раз ядовитее фосгена[нет в источнике][38].

Продукты термического разложения вызывают картину отравления, напоминающую литейную лихорадку. Вероятно, ядовит и обладает пирогенным эффектом также аэрозоль политетрафторэтилена, особенно свежеполученный, на котором сорбированы продукты деструкции. При вдыхании пыли холодного политетрафторэтилена через 2—5 часов у всех рабочих наблюдались симптомы, получившие название «тефлоновой лихорадки». Типичную тефлоновую лихорадку наблюдали при работе с политетрафторэтиленом, нагретым > 350 °C. При обследовании 130 человек и наличии в воздухе аэрозоля политетрафторэтилена в концентрации 0,2—5,5 мг/м3 выявлено, что у большинства работавших повторялись приступы лихорадки. У этих же лиц в моче обнаружен фтор (0,098—2,19 мг/л). Выделение фтора оказалось существенно выше при бóльшем стаже и повторных приступах[24].

Поскольку массовое выделение ядовитых веществ тефлоном начинается при температурах свыше 450 °C, то посуда с противопригарными покрытиями считается безопасной, так как при нормальной эксплуатации таких температур достичь невозможно[32]. Следует учитывать, что производители считают нормой только нагрев с водой или маслом в сковороде. Вода препятствует перегреву тефлона, а её полное испарение сигнализирует о существенном нагреве посуды, которое теперь никак не визуализируется и может стать критическим. Пищевые масла разлагаются при температурах до 200 °C с выделением дыма, что облегчает идентификацию перегрева. Нагрев на плите сухой посуды считается нештатным и в этом случае температуры пиролиза тефлона легко достижимы. Для упрощения эксплуатации некоторые модели посуды с тефлоновым покрытием снабжаются встроенными визуальными индикаторами температуры[нет в источнике][39].

Опасность продуктов разложения тефлона для птицПравить

Мелкие птицы более чувствительны к токсичным веществам, им достаточно нескольких секунд вдыхания испарений от разлагающегося тефлона и в течение последующих 24 часов наступает смерть[40][неавторитетный источник? (обс.)].

Вначале, когда новость о смертоносном вреде тефлона для птиц только появилась, было принято считать, что смертельные пары выделяются лишь при очень высоких температурах. К настоящему времени достоверно зафиксирован случай смерти 52 % птиц, в течение 3 суток дышавших испарениями тефлоновых поверхностей осветительных ламп, нагретых до 202 °C[41][неавторитетный источник? (обс.)]. По другим сведениям, для негативного эффекта достаточно всего лишь около 163 °C (325 °F)[41][неавторитетный источник? (обс.)][42][неавторитетный источник? (обс.)].

Опубликовано много сведений о гибели домашних птиц (например, попугаев) от испарений тефлоновых сковородок, оставленных без присмотра и перегретых выше безопасной температуры[41][неавторитетный источник? (обс.)][43][неавторитетный источник?][44][нет в источнике].

Птицы весьма чувствительны к испарениям, в том числе к парам кипящшего масла и дыму горящей органики, поэтому владельцам домашних птиц необходимо проветривать помещение во время готовки вне зависимости от того, в какой посуде они готовят — с непригарным покрытием или без него[45]

Решив проверить, что именно вредит птицам при использовании тефлоновой посуды, учёные провели эксперименты, и в 1975 году выяснили, что основной вред птицам приносят испарения перегретого масла в процессе нормального приготовления пищи при температурах, при которых не происходит термическое разложение тефлона. Исследователи отметили, что опасный для здоровья птиц термолиз политетрафторэтилена происходит при температурах, при которых не только продукты его разложения убивают птиц, но сгорает весь дом — это температуры, возникающие не при приготовлении пищи, но при пожаре[22][46]. Таким образом, птицам просто не место на кухне, и дело совсем не в антипригарном покрытии[22].

ПримечанияПравить

  1. 1 2 3 4 5 6 7 Скользкий тип : Тефлон : [арх. 28 февраля 2014] // Популярная механика : журн. — 2005. — Апрель.
  2. 1 2 Roy J. Plunkett  (англ.). Chemical Heritage Foundation. Дата обращения: 6 января 2011. Архивировано из оригинала 5 января 2011 года.
  3. 1 2 3 4 5 6 7 Accidental Invention of Teflon (англ.). Brain Candy. Дата обращения: 6 января 2011. Архивировано из оригинала 2 декабря 2013 года.
  4. What lab accident created Teflon (англ.). Curiosity. Discovery Communications, LLC.. Дата обращения: 6 января 2011. Архивировано из оригинала 2 декабря 2013 года.
  5. 1 2 3 Funderburg, A. C. Teflon : [англ.] : [арх. 22 сентября 2020] // American Heritage of Invention & Technologyruen. — 2010. — Vol. 25, no. 3. — P. 42.
  6. 1 2 Teflon : If nothing sticks to it, how do they get it to stick to the pan? : [англ.] : [арх. 14 февраля 2008] // Useless Information.
  7. Sun, J. Z. Modification of polytetrafluoroethylene by radiation—1. Improvement in high temperature properties and radiation stability : [англ.] / J. Z. Sun, Y. Zhang, X. Zhong … [et al.] // Radiation Physics and Chemistry. — 1994. — Vol. 44, no. 6. — P. 655–679. — ISSN 0969-806X. — Bibcode1994RaPC...44..655S. — doi:10.1016/0969-806X(94)90226-7.
  8. 1 2 Fluoropolymer Comparison — Typical Properties. Дата обращения: 28 октября 2012. Архивировано из оригинала 23 декабря 2006 года.
  9. Уткин В. В. Завод у двуречья. Кирово-Чепецкий химический комбинат. — с цв. вкладками. — Киров: ОАО «Дом печати — Вятка», 2006. — Т. 3. — 240 с. — 1000 экз. — ISBN 5-85271-250-7.
  10. Уткин В. В. 1 // Завод у двуречья. Кирово-Чепецкий химический комбинат имени Б.П.Константинова. — с цв. вкладками. — Киров: ОАО «Дом печати — Вятка», 2007. — Т. 4. — 144 с. — 1000 экз. — ISBN 978-5-85271-293-6.
  11. 1 2 Логинов Б. А. Удивительный мир фторполимеров. — илл. — М., 2008. — 128 с. — ISBN 978-5-85271-311-7.
  12. «Термоспоты и антипригарное покрытие»
  13. Волокна из ePTFE тефлона. Дата обращения: 8 ноября 2009. Архивировано из оригинала 21 ноября 2009 года.
  14. ГОСТ 24222-80: Пленка и лента из фторопласта-4. Технические условия. docs.cntd.ru. Дата обращения: 19 мая 2020. Архивировано 19 февраля 2020 года.
  15. Химические и физические свойства тефлона. matins.ru. Дата обращения: 19 мая 2020. Архивировано 5 февраля 2021 года.
  16. Металлофторопластовые подшипники. Дата обращения: 28 октября 2012. Архивировано из оригинала 14 февраля 2015 года.
  17. Сайт компании «Экофлон». Дата обращения: 20 января 2012. Архивировано 18 января 2012 года.
  18. Протезы кровеносных сосудов. История вопроса. http://www.hospsurg.ru/angiohirurgiya/protezy-krovenosnyh-sosudov.html Архивная копия от 12 октября 2011 на Wayback Machine
  19. 1 2 Тефлоновое покрытие в современных изделиях. http://www.masstechnology.ru/est-li-vred-antiprigarnogo-pokrytiya-teflonovoe-pokrytie-v-sovremennyx-izdeliyax Архивная копия от 30 июня 2012 на Wayback Machine
  20. Каталог CYTOPLAST. Дата обращения: 6 января 2019. Архивировано 1 апреля 2019 года.
  21. Запорожские врачи первыми в мире разработали уникальную методику в области отоларингологии. Дата обращения: 20 января 2012. Архивировано из оригинала 14 мая 2012 года.
  22. 1 2 3 4 5 6 Скворцова, Т. Правда ли, что тефлоновое покрытие вредно для здоровья? // Проверено. — 2022. — 4 ноября.
  23. Архивированная копия. Дата обращения: 8 августа 2012. Архивировано из оригинала 1 мая 2014 года.
  24. 1 2 Лазарев Н. В. Вредные вещества в промышленности Архивная копия от 10 декабря 2017 на Wayback Machine. — Т. 2. — С. 530—531.
  25. 1 2 3 Перфтороктановая кислота. Дата обращения: 26 октября 2014. Архивировано из оригинала 19 декабря 2016 года.
  26. E.P.A. Orders Companies to Examine Effects of Chemicals. Дата обращения: 30 сентября 2017. Архивировано 12 ноября 2017 года.
  27. Juliet Eilperin. Harmful PTFE chemical to be eliminated by 2015, Washington Post (2006-01-26). Архивировано 6 сентября 2006 года. Дата обращения: 10 сентября 2006.
  28. Key Questions about the Safety of Nonstick Cookware. Дата обращения: 24 июля 2009. Архивировано 2 мая 2013 года.
  29. Short Statement on Nonstick Cookware Safety Prepared by the Nonstick Coating Manufacturers Group of the Fluoropolymer Division of The Society of the Plastics Industry, Inc. (SPI), May 26, 2006, http://www.cookware.org/safety_statement.php Архивная копия от 25 августа 2013 на Wayback Machine
  30. Журнал «PRO Maison», 2(13) май 2012, с. 30—31.
  31. T. H. Begley , K. White , P. Honigfort , M. L. Twaroski , R. Neches, R. A. Walker. Perfluorochemicals: Potential sources of and migration from food packaging // Food Additives and Contaminants. — 2005. — № 22(10). — С. 1023–1031. — doi:10.1080/02652030500183474.
  32. 1 2 3 Антипригарные сковородки: Pro et Contra на сайте КАЧЕСТВО.РУ http://kachestvo.ru/promtovar/byt/antiprigarnye-skovorodki-pro-et-contra.html Архивная копия от 4 июня 2012 на Wayback Machine [неавторитетный источник?]
  33. Health & Safety — What about PFOA? — Fluoropolymers. Дата обращения: 8 августа 2012. Архивировано из оригинала 24 марта 2012 года.
  34. CMA Cookware Safety Statement. Дата обращения: 8 августа 2012. Архивировано из оригинала 25 августа 2013 года.
  35. Российской химической промышленности необходим регламент «О безопасности фтор-, хлор соединений». — Rosinvest.com. — 11 октября 2012 года. — Архивная копия от 8 июля 2014 на Wayback Machine
  36. ГОСТ 10007-80 Фторопласт-4 — Технические условия Архивная копия от 21 января 2012 на Wayback Machine.
  37. Zapp, J. A., Jr. Toxicity of Pyrolysis Products of «Teflon» Tetrafluoroethylene Resin : [англ.] / J. A., Jr. Zapp, G. Limperos, K. C. Brinker // Proceedings of the American Industrial Hygiene Association Annual Meeting. — Cincinnati, Ohio, 1955.
  38. Jiri Patocka, Jiri Bajgar: Toxicology of Perfluoroisobutene. Архивная копия от 24 ноября 2020 на Wayback Machine The ASA Newsletter, 1998, 5(69):16-18 ISSN 1057-9419.
  39. Индикатор температуры Tefal Thermo-Spot®
  40. An agonizing death. Environmental Working Groupruen. Дата обращения: 29 августа 2009. Архивировано из оригинала 8 ноября 2009 года.[неавторитетный источник? (обс.)]
  41. 1 2 3 Teflon offgas studiesEnvironmental Working Groupruen. — Архивировано 4 февраля 2013 года.[неавторитетный источник? (обс.)]
  42. Teflon kills birds. Environmental Working Groupruen. Дата обращения: 26 августа 2009. Архивировано 16 июня 2009 года.[неавторитетный источник? (обс.)]
  43. Nonstick Cookware Can Kill Birds. Starling Talk. Дата обращения: 13 августа 2009. Архивировано 13 августа 2009 года.
  44. Can Nonstick Make You Sick? . ABC News. Дата обращения: 15 августа 2009. Архивировано 14 января 2009 года.
  45. Key Questions About Teflon non-sticks. Du Pont. Дата обращения: 24 июля 2009. Архивировано 2 мая 2013 года.
  46. Waritz, R. S. An Industrial Approach to Evaluation of Pyrolysis and Combustion Hazards : [англ.] // Environmental Health Perspectives. — 1975. — Vol. 11. — P. 197-202. — doi:10.1289/ehp.7511197. — PMID 1175553. — PMC 1475183.