Хлорофи́лл (от греч. χλωρός, «зелёный» и φύλλον, «лист») — зелёный пигмент, окрашивающий хлоропласты растений в зелёный цвет. При его участии происходит фотосинтез. По химическому строению хлорофиллы — магниевые комплексы различных тетрапирролов. Хлорофиллы имеют порфириновое строение и близки гему. Хлорофилл зарегистрирован в качестве пищевой добавки Е140.

Хлорофилл
Изображение химической структуры
Изображение молекулярной модели
Общие
Хим. формула C55H72MgN4O5
Классификация
Рег. номер CAS 1406-65-1
Рег. номер EINECS 215-800-7
SMILES
Кодекс Алиментариус E140
ChEBI 28966
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе

История открытия

править

В 1817 году Жозеф Бьенеме Каванту и Пьер Жозеф Пеллетье выделили из листьев растений зелёный пигмент, который они назвали хлорофиллом[1]. В 1900-х годах Михаил Цвет[2] и Рихард Вильштеттер независимо друг от друга обнаружили, что хлорофилл состоит из нескольких компонентов. Вильтштеттер очистил и кристаллизовал два компонента хлорофилла, названные им хлорофиллами а и b и установил брутто-формулу хлорофилла а. В 1915 году за исследования хлорофилла ему была вручена Нобелевская премия. В 1940 Ханс Фишер, получивший в 1930 Нобелевскую премию за открытие структуры гема, установил химическую структуру хлорофилла a. Его синтез был впервые осуществлён в 1960 Робертом Вудвордом[3], а в 1967 была окончательно установлена его стереохимическая структура[4].

В природе

править
 
Листва деревьев
 
Цвет листвы фотосинтезирующих растений обусловлен высокой концентрацией хлорофилла

Хлорофилл присутствует во всех фотосинтезирующих организмах — высших растениях, водорослях, синезелёных водорослях (цианобактериях), фотоавтотрофных простейших (протистах) и бактериях.

Некоторые растения, в том числе ряд высших растений, утратили хлорофилл (как, например, петров крест).

Синтез

править

Синтезирован Робертом Вудвордом в 1960 году.

Синтез включает в себя 15 реакций, которые можно разделить на 3 этапа. Исходными веществами для синтеза хлорофилла являются глицин и ацетат. На первом этапе образуется аминолевулиновая кислота. На втором этапе происходит синтез одной молекулы протопорфирина из четырёх пиррольных колец. Третий этап представляет собой образование и превращение магнийпорфиринов.

Свойства и функция при фотосинтезе

править

В процессе фотосинтеза молекула хлорофилла претерпевает изменения, поглощая световую энергию, которая затем используется в фотохимической реакции взаимодействия углекислого газа и воды с образованием органических веществ (как правило, углеводов):

 

После передачи поглощённой энергии молекула хлорофилла возвращается в исходное состояние.

Хотя максимум непрерывного спектра солнечного излучения расположен в «зелёной» области 550 нм (где находится и максимум чувствительности глаза), поглощается хлорофиллом преимущественно синий, частично — красный свет из солнечного спектра (чем и обуславливается зелёный цвет отражённого света).

Растения могут использовать и свет с теми длинами волн, которые слабо поглощаются хлорофиллом. Энергию фотонов при этом улавливают другие фотосинтетические пигменты, которые затем передают энергию хлорофиллу. Этим объясняется разнообразие окраски растений (и других фотосинтезирующих организмов) и её зависимость от спектрального состава падающего света.

Химическая структура

править

Хлорофиллы можно рассматривать как производные протопорфирина — порфирина с двумя карбоксильными заместителями (свободными или этерифицированными). Так, хлорофилл a имеет карбоксиметиловую группу при С10, фитоловый эфир пропионовой кислоты — при С7. Удаление магния, легко достигаемое мягкой кислотной обработкой, даёт продукт, известный как феофитин. Гидролиз фитоловой эфирной связи хлорофилла приводит к образованию хлорофиллида (хлорофиллид, лишённый атома металла, известен как феофорбид a).

Все эти соединения интенсивно окрашены и сильно флуоресцируют, исключая те случаи, когда они растворены в органических растворителях в строго безводных условиях. Они имеют характерные спектры поглощения, пригодные для качественного и количественного определения состава пигментов. Для этой же цели часто используются также данные о растворимости этих соединений в соляной кислоте, в частности для определения наличия или отсутствия этерифицированных спиртов. Хлороводородное число определяется как концентрация HCl (%, масс./об.), при которой из равного объёма эфирного раствора пигмента экстрагируется 2/3 общего количества пигмента. «Фазовый тест» — окрашивание зоны раздела фаз — проводят, подслаивая под эфирный раствор хлорофилла равный объём 30%-го раствора гидроксида калия в метаноле. В интерфазе должно образовываться окрашенное кольцо. С помощью тонкослойной хроматографии можно быстро определять хлорофиллы в сырых экстрактах.

Хлорофиллы неустойчивы на свету; они могут окисляться до алломерных хлорофиллов на воздухе в метанольном или этанольном растворе.

Хлорофиллы образуют комплексы с белками in vivo и могут быть выделены в таком виде. В составе комплексов их спектры поглощения значительно отличаются от спектров свободных хлорофиллов в органических растворителях.

Хлорофиллы можно получить в виде кристаллов. Добавление H2O или Ca2+ к органическому растворителю способствует кристаллизации.

Хлорофилл a Хлорофилл b Хлорофилл c1 Хлорофилл c2 Хлорофилл d Хлорофилл f
Формула C55H72O5N4Mg C55H70O6N4Mg C35H30O5N4Mg C35H28O5N4Mg C54H70O6N4Mg C55H70O6N4Mg
группа C2 -CH3 -CH3 -CH3 -CH3 -CH3 -CHO
группа C3 -CH=CH2 -CH=CH2 -CH=CH2 -CH=CH2 -CHO -CH=CH2
группа C7 -CH3 -CHO -CH3 -CH3 -CH3 -CH3
группа C8 -CH2CH3 -CH2CH3 -CH2CH3 -CH=CH2 -CH2CH3 -CH2CH3
группа C17 -CH2CH2COO-Phytyl -CH2CH2COO-Phytyl -CH=CHCOOH -CH=CHCOOH -CH2CH2COO-Phytyl -CH2CH2COO-Phytyl
связь C17-C18 Одинарная Одинарная Двойная Двойная Одинарная Одинарная
Распространение Везде Большинство наземных растений Некоторые водоросли Некоторые водоросли Цианобактерии Цианобактерии

Применение

править

Хлорофилл находит применение в пищевой промышленности как пищевая добавка (регистрационный номер в европейском реестре E140), однако при хранении в этанольном растворе, особенно в кислой среде, неустойчив, приобретает грязно-коричнево-зеленый оттенок, и не может использоваться как натуральный краситель. Нерастворимость нативного хлорофилла в воде также ограничивает его применение в качестве натурального пищевого красителя. Но хлорофилл вполне успешно используется в качестве натуральной замены синтетических красителей при изготовлении кондитерских изделий[источник не указан 4652 дня].

Производное хлорофилла — хлофиллин медный комплекс (тринатриевая соль) получил распространение в качестве пищевого красителя (Регистрационный номер в европейском реестре E141). В отличие от нативного хлорофилла, медный комплекс устойчив в кислой среде, сохраняет изумрудно-зелёный цвет при длительном хранении и растворим в воде и водно-спиртовых растворах. Американская (USP) и Европейская (EP) фармакопеи относят хлорофиллид меди к пищевым красителям, однако вводят лимит на концентрацию свободной и связанной меди (тяжёлый металл).

Безопасность

править

Объединённый экспертный комитет ФАО/ВОЗ по пищевым добавкам (JECFA) в 1969, 1975 и 1985 годах исследовал токсичность хлорофилла для его использования в качестве пищевой добавки[5]. По итогам проведённых исследований, не удалось установить допустимое суточное потребление (ДСП), поскольку вещество не проявляло негативные эффекты даже в высоких дозировках[5]. В 2015 году Европейское агентство по безопасности продуктов питания (EFSA) провело переоценку хлорофилла и пришло к выводу, что нет никаких оснований полагать, что хлорофилл представляет какую-либо опасность[6].

Примечания

править
  1. Pelletier and Caventou (1817) «Notice sur la matière verte des feuilles» («Замечания о зелёном материале листьев»), Journal de Pharmacie, 3 : 486—491.
  2. M. Tswett (1906) Physikalisch-chemische Studien über das Chlorophyll. Die Adsorptionen. (Физико-химические исследования хлорофилла. Адсорбция.) Ber. Dtsch. Botan. Ges. 24, 316—323 .
  3. R. B. Woodward, W. A. Ayer, J. M. Beaton, F. Bickelhaupt, R. Bonnett. THE TOTAL SYNTHESIS OF CHLOROPHYLL (англ.) // Journal of the American Chemical Society. — 1960. — Vol. 82, iss. 14. — P. 3800–3802. — doi:10.1021/ja01499a093.
  4. Ian Fleming. Absolute Configuration and the Structure of Chlorophyll (англ.) // Nature. — 1967-10-14. — Vol. 216, iss. 5111. — P. 151–152. — doi:10.1038/216151a0.
  5. 1 2 World Health Organization. CHLOROPHYLLS // Joint FAO/WHO Expert Committee on Food Additives. Архивировано 28 декабря 2022 года.
  6. Scientific Opinion on the re-evaluation of chlorophylls (E 140(i)) as food additives (англ.). European Food Safety Authority (7 мая 2015). Дата обращения: 13 октября 2022. Архивировано 13 октября 2022 года.

Ссылки

править