Середина отрезка — точка на заданном отрезке, находящаяся на равном расстоянии от обоих концов данного отрезка. Является центром масс как всего отрезка, так и его конечных точек.

Средняя точка отрезка с вершинами (x1, y1) и (x2, y2)

Координаты править

Средняя точка отрезка в  -мерном пространстве, концами которого являются точки   и  , задаётся формулой:

 .

Таким образом,  -я координата средней точки ( ) равна:

 .

Построение править

 
Построение с помощью циркуля и линейки

Если заданы две точки, нахождение середины образованного ими отрезка может быть осуществлено с помощью циркуля и линейки. Для нахождения середины отрезка на плоскости можно сначала построить две дуги равного (и достаточно большого) радиуса с центрами в концах отрезка, а затем через точки пересечения этих дуг провести прямую. Точка, где полученная прямая пересекает отрезок, является его серединой.

 
Построение с помощью одного циркуля

С использованием теоремы Мора — Маскерони возможно также нахождение середины отрезка с помощью одного только циркуля: на первом шаге для отрезка   строится точка  , симметричная точке   относительно точки  ; на втором шаге строится инверсия точки   относительно окружности радиуса   с центром в точке  ; полученная точка является серединой отрезка  [1][2][3].

Можно также построить середину отрезка с помощью только линейки при условии, что на плоскости имеется окружность с отмеченным центром[4].

Геометрические свойства править

 

Середина любого диаметра окружности является центром окружности. Перпендикуляр к любой хорде, проходящий через её середину, проходит через центр окружности. Теорема о бабочке утверждает, что если   является серединой хорды   и через середину проходят две другие хорды   и  , то   и   пересекают хорду   в точках   и   соответственно таким образом, что   является серединой отрезка  .

Центр эллипса является серединой отрезка, соединяющего два фокуса эллипса.

Середина отрезка, соединяющего вершины гиперболы, является центром гиперболы.

Перпендикуляры к серединам сторон треугольника пересекаются в одной точке, и эта точка является центром описанной окружности. Центр девяти точек треугольника — середина отрезка, соединяющего центра описанной окружности с ортоцентром данного треугольника. Вершины серединного треугольника данного треугольника лежат в серединах сторон треугольника.

В прямоугольном треугольнике центр описанной окружности является серединой гипотенузы. В равнобедренном треугольнике медиана, высота и биссектриса угла при вершине совпадают с прямой Эйлера и осью симметрии, и эта прямая проходит через середину основания.

Две бимедианы выпуклого четырёхугольника — это отрезки, соединяющие середины противоположных сторон. Две бимедианы и отрезок, соединяющий середины диагоналей, пересекаются в одной точке, которая является серединой этих трёх отрезков[5]. Теорема Брахмагупты утверждает, что если вписанный в окружность четырёхугольник является ортодиагональным (то есть, имеющий перпендикулярные диагонали), то перпендикуляры к сторонам из точки пересечения диагоналей всегда проходят через середину противоположной стороны. Теорема Вариньона утверждает, что середины сторон произвольного четырёхугольника являются вершинами параллелограмма, а если четырёхугольник к тому же является самонепересекающимся, то площадь параллелограмма равна половине площади четырёхугольника. Прямая Ньютона — линия, соединяющая середины двух диагоналей выпуклого четырёхугольника, не являющегося параллелограммом. Отрезки, соединяющие середины противоположных сторон выпуклого четырёхугольника, пересекаются в точке, лежащей на прямой Ньютона.

Правильный многоугольник имеет вписанную окружность, которая касается всех сторон многоугольника в серединах его сторон. В правильном многоугольнике с чётным числом сторон середины диагоналей, соединяющих противоположные центры, являются центром многоугольника. Серединный многоугольник — многоугольник, вершины которого — середины рёбер исходного многоугольника. Растянутый многоугольник серединных точек вписанного многоугольника P является другим вписанным многоугольником, вписанным в ту же окружность, и его вершины являются серединами дуг между вершинами P[6]. Повторение операции создания многоугольника растянутых средних точек приводит к последовательности многоугольников, форма которых сходится к правильному многоугольнику[6][7].

Обобщения править

Середина отрезка является аффинным инвариантом, поэтому координатные формулы[⇨] применимы к любой аффинной системе координат.

Середину отрезка невозможно определить в проективной геометрии: любая внутренняя точка отрезка может быть проективно отображена в любую другую точку внутри (того же или любого другого) проективного отрезка. Закрепление одной такой точки в качестве середины определяет аффинную структуру на проективной прямой, содержащей этот отрезок. Четвёртая точка гармонической четвёрки для такой «средней точки» и двух конечных точек является бесконечно удалённой точкой[8].

Понятие середины отрезка можно ввести на геодезических в римановом многообразии, но в отличие от аффинного случая, середина отрезка может быть не единственной.

Примечания править

  1. Костовский, 1984, с. 20.
  2. Курант, Роббинс, 2001, с. 172—179.
  3. Wolfram mathworld (29 сентября 2010). Дата обращения: 20 июля 2015. Архивировано из оригинала 25 ноября 2016 года.
  4. Адлер, 1940, с. 67—72.
  5. Altshiller-Court, 2007.
  6. 1 2 Ding, Jiu, Zhang, 2003, с. 255—270.
  7. Gomez-Martin, Taslakian, Toussaint, 2008.
  8. Coxeter, 1949, с. 119.

Литература править

  • А. Н. Костовский. Геометрические построения одним циркулем. — М.: «Наука» Главная редакция физико-математической литературы, 1984. — (Популярные лекции по математике).
  • Август Адлер. Теория геометрических построений. — Ленинград: Государственное учебно-педагогическое издательство Наркомпроса РСФСР, Ленинградское отделение, 1940.
  • Р. Курант, Г. Роббинс. Что такое математика?. — 3-е. — МЦНМО, 2001. — ISBN 5–900916–45–6.
  • Jiu Ding, L. Richard Hitt, Xin-Min Zhang. Markov chains and dynamic geometry of polygons // Linear Algebra and its Applications. — 2003. — Т. 367. — doi:10.1016/S0024-3795(02)00634-1.
  • Francisco Gomez-Martin, Perouz Taslakian, Godfried T. Toussaint. 18th Fall Workshop on Computational Geometry. — 2008.
  • H. S. M. Coxeter. The Real Projective Plane. — New York, Toronto, London: McGraw-Hill, 1949.
  • Х. С. М. Коксетер. Действительная проективная плоскость. — М.: Физматлит, 1959.
  • Nathan Altshiller-Court. College Geometry. — Mineola, New York: Dover Publ., 2007. — ISBN 0-486-45805-9.

Ссылки править