Пространство Урысона

Пространство Урысона — метрическое пространство, универсальное в определённом смысле.

ОпределениеПравить

Пространство Урысонаполное сепарабельное метрическое пространство  , обладающее следующими двумя свойствами:

  • (Универсальность.) Любое конечное метрическое пространство изометрично некоторому подмножеству  .
  • (Конечная однородность.) Для любых двух конечных изометричных его подмножеств   любая изометрия между ними продолжается до глобальной изометрии  .

СвойстваПравить

  • Пространство Урысона существует и единственно с точностью до изометрии.
  • Пространство Урысона   является компактно однородным. То есть любое изометрическое отображение компактного подмножества   в   можно продолжить до изометрии  .
  • Пространство Урысона гомеоморфно произведению счётного числа вещественных прямых.[1]
  • При некоторой естественной процедуре порождения случайного полного сепарабельного метрического пространства получающееся пространство почти наверное оказывается изометричным пространству Урысона. (Это свойство аналогично основному свойству графу Радо — Эрдеша — Реньи)

ИсторияПравить

Морис Фреше доказал, что пространство   включает в себя изометрическую копию любого сепарабельного метрического пространства. Однако, в отличие от пространстве Урысона,   не является ни конечно-однородным, ни сепарабельным. Он поставил вопрос о существовании сепарабельного пространства, обладающего этим свойством. Такое пространство было построено Павлом Самуиловичем Урысоном.[2]

На поставленный Урысоном вопрос о существовании неполного универсального конечно-однородного пространства дал положительный ответ Мирослав Катетов.[3]

ПримечанияПравить

  1. V. Uspenskij. “The Urysohn universal metric space is homeomorphic to a Hilbert space”. Topology Appl. 139.1-3 (2004), 145–149.
    • «Sur un espace metrique universel» Comptes Rendus Acad, Paris, 180 (1925), стр. 803 (краткое сообщение)
    • «Sur un espace metrique universel» Bull, de Sciences Mathematiques, 2-я серия, т. 51, стр. 1—38.
      • Перевод: Урысон, П. С. "Об универсальном метрическом пространстве." ПС Урысон. Труды по топологии и другим областям математики. М: 747—777.
  2. M. Katětov. “On universal metric spaces”. General topology and its relations to modern analysis and algebra, VI (Prague, 1986). Vol. 16. Res. Exp. Math. Heldermann, Berlin, 1988, 323–330.

СсылкиПравить

  • А. М. Вершик, Случайное метрическое пространство есть пространство Урысона, Докл. РАН, 387:6 (2002), 733—736