Открыть главное меню

Результант

В математике, результантом двух многочленов и над некоторым полем , старшие коэффициенты которых равны единице, называется выражение

иными словами, это произведение попарных разностей между их корнями. Произведение здесь берётся по всем корням в алгебраическом замыкании поля с учётом их кратностей; поскольку получающееся выражение является симметрическим многочленом от корней многочленов и (лежащих, быть может, вне поля ), оно тем самым оказывается многочленом от коэффициентов и . Для многочленов, старшие коэффициенты которых ( и соответственно) не обязательно равны 1, вышеупомянутое выражение умножается на

Свойства и способы вычисленияПравить

  • Основным свойством результанта (и его основным применением) является следующее: результант — многочлен от коэффициентов   и  , равный нулю в том и только в том случае, когда у многочленов   и   имеется общий корень (возможно, в некотором расширении поля  ).
  • Результант может быть найден как определитель матрицы Сильвестра.
  • Дискриминант — это, с точностью до знака, результант многочлена и его производной, поделённый на старший коэффициент многочлена; тем самым, дискриминант равен нулю тогда и только тогда, когда у многочлена есть кратные корни.
  •  
  •  
  •  
  • Если  , то
 
  •  , т.е. результант тогда и только тогда равен нулю, когда НОД многочленов нетривиален. Вообще, вычисление результанта может быть произведено с помощью алгоритма Евклида, и именно так вычисляется результант в различных матпакетах.
  • Для многочленов   существуют многочлены   с   такие, что
 . Многочлены   с   могут быть получены из представления результанта определителем в форме Сильвестра, в котором последний столбец заменен на   для   или на   для  .
  • Для сепарабельного многочлена (в частности, для полей характеристики нуль) результант равен произведению значений одного из многочленов по корням другого (как и раньше, произведение берётся с учётом кратности корней):
 

ЛитератураПравить

  • Прасолов В. В. Многочлены. — М.: МЦНМО, 1999, 2001, 2003.
  • Калинина Е.А., Утешев А.Ю. Теория исключения. — СПбГУ, НИИ химии, 2002.

СсылкиПравить