Тензор Вейля

Тензор кривизны Вейля — часть тензора кривизны Римана с нулевым следом. Другими словами, это тензор, удовлетворяющий всем свойствам симметрии тензора Римана с дополнительным условием, что построенный по нему тензор Риччи равен нулю.

Назван в честь Германа Вейля.

ОпределениеПравить

Тензор Вейля можно получить из тензора кривизны, если вычесть из него определённые комбинации тензора Риччи и скалярной кривизны. Формула для тензора Вейля легче всего записывается через тензор Римана в форме тензора валентности (0,4):

 

где n — размерность многообразия, g — метрика, R — тензор Римана, Ric — тензор Риччи, s — скалярная кривизна, а h O k — так называемое произведение Кулкарни — Номидзу, произведение двух симметричных тензоров валентности (0,2) есть тензор валентности (0,4), удовлетворяющий симметриям тензора кривизны:

   
 

В компонентах, тензор Вейля задаётся выражением:

 

где   — тензор Римана,   — тензор Риччи,   — скалярная кривизна и [] обозначает операцию антисимметризации.

СвойстваПравить

  • Тензор Вейля может иметь нетривиальную форму только в пространствах с размерностью не меньше четырёх. В двумерном и трёхмерном пространствах тензоры Вейля тождественно равны нулю.
  • Тензор Вейля остаётся инвариантным при конформных преобразованиях метрики. То есть, если для данной метрики g ввести новую метрику   при помощи некоторой функции  , то (1,3)-валентный тензор Вейля не изменяется:  . По этой причине тензор Вейля ещё называют конформным тензором. Из этого свойства следует, что
    • для того, чтобы многообразие было конформно евклидовым, необходимо чтобы его тензор Вейля равнялся нулю.
    • Для размерностей ≥ 4 это условие оказывается также и достаточным.
    • Для пространств размерности 3 необходимым и достаточным условием конформной евклидовости является равенство нулю тензора Коттона.

См. такжеПравить