Открыть главное меню

Теплоёмкость — физическая величина, определяемая как количество теплоты, которое необходимо подвести к телу в данном процессе, чтобы его температура возросла на один кельвин[1][2]:

Теплоёмкость
Размерность L2MT −2Θ−1
Единицы измерения
СИ Дж/К
СГС эрг/К
Примечания
Скалярная величина

Во многих важных случаях приращение температуры тела прямо пропорционально сообщённому ему количеству теплоты и теплоёмкость тела является константой. В общем случае теплоёмкость тела может зависеть от параметров состояния этого тела, например его температуры или объёма[1][2].

Содержание

Удельная, молярная и объёмная теплоёмкостиПравить

Очевидно, что чем больше масса тела, тем больше требуется теплоты для его нагревания, и теплоёмкость тела пропорциональна количеству вещества, содержащегося в нём. Количество вещества может характеризоваться массой или количеством молей. Поэтому удобно пользоваться понятиями удельной теплоёмкости (теплоёмкости единицы массы тела):

 

и молярной теплоёмкости (теплоёмкости одного моля вещества):

 

где   — количество вещества в теле;   — масса тела;   — молярная масса. Молярная и удельная теплоёмкости связаны соотношением  [1][2].

Объёмная теплоёмкость (теплоёмкость единицы объёма тела):

 

Теплоёмкость для различных процессов и состояний веществаПравить

Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоёмкости электронного газа).

Теплоёмкость идеального газаПравить

Теплоёмкость системы невзаимодействующих частиц (например, идеального газа) определяется числом степеней свободы частиц.

Молярная теплоёмкость при постоянном объёме:

 

где   ≈ 8,31 Дж/(моль·К) — универсальная газовая постоянная,   — число степеней свободы молекулы[1][2].

Молярная теплоёмкость при постоянном давлении[1][2]:

 

Теплоёмкость кристалловПравить

Теория теплоёмкостиПравить

 
Сравнение моделей Дебая и Эйнштейна для теплоёмкости твёрдого тела

Существует несколько теорий теплоёмкости твердого тела:

Существующие теории теплоёмкости не охватывают всех особенностей поведения теплоёмкости различных твёрдых тел. В первую очередь это относится к аномальным пикам на кривых теплоёмкости, а также росту в высокотемпературной области удельной теплоёмкости над уровнем 3R нормальной (колебательной) составляющей. Возникновение некоторых из перечисленных аномалий детально исследовано и имеет своё физическое объяснение. Это в первую очередь относится к лямбда-пикам, связанным с ферромагнитными и ориентационными переходами, а также с переходами от упорядоченных к неупорядоченным структурам. Аномальные отклонения над уровнем 3R кривой теплоёмкости графита и алмаза в высокотемпературной области (Т > 3000 K) обусловлены процессами термодеструкции с переходом в плавление. Аномальные пики на кривых теплоёмкости германия и гафния объясняются процессами в кристаллической решетке, контролируемыми больцмановским фактором exp(-E/RT).

ПримечанияПравить

  1. 1 2 3 4 5 Никеров. В. А. Физика: учебник и практикум для академического бакалавриата. — Юрайт, 2015. — С. 127—129. — 415 с. — ISBN 978-5-9916-4820-2.
  2. 1 2 3 4 5 Ильин В. А. Физика: учебник и практикум для прикладного бакалавриата. — Юрайт, 2016. — С. 142—143. — 399 с. — ISBN 978-5-9916-6343-4.

ЛитератураПравить